Abstract:Vector similarity search is an essential primitive in modern AI and ML applications. Most vector databases adopt graph-based approximate nearest neighbor (ANN) search algorithms, such as DiskANN (Subramanya et al., 2019), which have demonstrated state-of-the-art empirical performance. DiskANN's graph construction is governed by a reachability parameter $α$, which gives a trade-off between construction time, query time, and accuracy. However, adaptively tuning this trade-off typically requires rebuilding the index for different $α$ values, which is prohibitive at scale. In this work, we propose RP-Tuning, an efficient post-hoc routine, based on DiskANN's pruning step, to adjust the $α$ parameter without reconstructing the full index. Within the $α$-reachability framework of prior theoretical works (Indyk and Xu, 2023; Gollapudi et al., 2025), we prove that pruning an initially $α$-reachable graph with RP-Tuning preserves worst-case reachability guarantees in general metrics and improved guarantees in Euclidean metrics. Empirically, we show that RP-Tuning accelerates DiskANN tuning on four public datasets by up to $43\times$ with negligible overhead.