Topic:Network Intrusion Detection
What is Network Intrusion Detection? Network intrusion detection is the process of identifying and preventing unauthorized access to computer networks.
Papers and Code
Mar 27, 2024
Abstract:With the rapidly spreading usage of Internet of Things (IoT) devices, a network intrusion detection system (NIDS) plays an important role in detecting and protecting various types of attacks in the IoT network. To evaluate the robustness of the NIDS in the IoT network, the existing work proposed a realistic botnet dataset in the IoT network (Bot-IoT dataset) and applied it to machine learning-based anomaly detection. This dataset contains imbalanced normal and attack packets because the number of normal packets is much smaller than that of attack ones. The nature of imbalanced data may make it difficult to identify the minority class correctly. In this thesis, to address the class imbalance problem in the Bot-IoT dataset, we propose a binary classification method with synthetic minority over-sampling techniques (SMOTE). The proposed classifier aims to detect attack packets and overcome the class imbalance problem using the SMOTE algorithm. Through numerical results, we demonstrate the proposed classifier's fundamental characteristics and the impact of imbalanced data on its performance.
Via

Feb 25, 2024
Abstract:As cyber-attacks become more sophisticated, improving the robustness of Machine Learning (ML) models must be a priority for enterprises of all sizes. To reliably compare the robustness of different ML models for cyber-attack detection in enterprise computer networks, they must be evaluated in standardized conditions. This work presents a methodical adversarial robustness benchmark of multiple decision tree ensembles with constrained adversarial examples generated from standard datasets. The robustness of regularly and adversarially trained RF, XGB, LGBM, and EBM models was evaluated on the original CICIDS2017 dataset, a corrected version of it designated as NewCICIDS, and the HIKARI dataset, which contains more recent network traffic. NewCICIDS led to models with a better performance, especially XGB and EBM, but RF and LGBM were less robust against the more recent cyber-attacks of HIKARI. Overall, the robustness of the models to adversarial cyber-attack examples was improved without their generalization to regular traffic being affected, enabling a reliable detection of suspicious activity without costly increases of false alarms.
* 15 pages, 8 tables, 2 figures, FPS 2023 conference
Via

May 29, 2024
Abstract:The effectiveness of anomaly signal detection can be significantly undermined by the inherent uncertainty of relying on one specified model. Under the framework of model average methods, this paper proposes a novel criterion to select the weights on aggregation of multiple models, wherein the focal loss function accounts for the classification of extremely imbalanced data. This strategy is further integrated into Random Forest algorithm by replacing the conventional voting method. We have evaluated the proposed method on benchmark datasets across various domains, including network intrusion. The findings indicate that our proposed method not only surpasses the model averaging with typical loss functions but also outstrips common anomaly detection algorithms in terms of accuracy and robustness.
Via

Feb 21, 2024
Abstract:This paper proposes an Intrusion Detection System (IDS) employing the Harris Hawks Optimization algorithm (HHO) to optimize Multilayer Perceptron learning by optimizing bias and weight parameters. HHO-MLP aims to select optimal parameters in its learning process to minimize intrusion detection errors in networks. HHO-MLP has been implemented using EvoloPy NN framework, an open-source Python tool specialized for training MLPs using evolutionary algorithms. For purposes of comparing the HHO model against other evolutionary methodologies currently available, specificity and sensitivity measures, accuracy measures, and mse and rmse measures have been calculated using KDD datasets. Experiments have demonstrated the HHO MLP method is effective at identifying malicious patterns. HHO-MLP has been tested against evolutionary algorithms like Butterfly Optimization Algorithm (BOA), Grasshopper Optimization Algorithms (GOA), and Black Widow Optimizations (BOW), with validation by Random Forest (RF), XG-Boost. HHO-MLP showed superior performance by attaining top scores with accuracy rate of 93.17%, sensitivity level of 89.25%, and specificity percentage of 95.41%.
Via

Apr 28, 2024
Abstract:With the ever-increasing reliance on digital networks for various aspects of modern life, ensuring their security has become a critical challenge. Intrusion Detection Systems play a crucial role in ensuring network security, actively identifying and mitigating malicious behaviours. However, the relentless advancement of cyber-threats has rendered traditional/classical approaches insufficient in addressing the sophistication and complexity of attacks. This paper proposes a novel 3-stage intrusion detection system inspired by a simplified version of the Lockheed Martin cyber kill chain to detect advanced multi-step attacks. The proposed approach consists of three models, each responsible for detecting a group of attacks with common characteristics. The detection outcome of the first two stages is used to conduct a feasibility study on the possibility of predicting attacks in the third stage. Using the ToN IoT dataset, we achieved an average of 94% F1-Score among different stages, outperforming the benchmark approaches based on Random-forest model. Finally, we comment on the feasibility of this approach to be integrated in a real-world system and propose various possible future work.
Via

Jun 04, 2024
Abstract:Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems. It is not surprising that the same technology is being applied to secure Internet of Things (IoT) networks from cyber threats. The limited computational resources available on IoT devices make it challenging to deploy conventional computing-based IDSs. The IDSs designed for IoT environments must also demonstrate high classification performance, utilize low-complexity models, and be of a small size. Despite significant progress in IoT-based intrusion detection, developing models that both achieve high classification performance and maintain reduced complexity remains challenging. In this study, we propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset. The proposed model is specifically designed to run onboard resource-constrained IoT devices and meet their computation capability requirements. Despite the complexity of designing a model that fits the requirements of IoT devices and achieves higher accuracy, our proposed model outperforms the existing research efforts in the literature by achieving an accuracy of 97.28\% for binary classification and 96.91\% for multiclassification.
Via

Jul 04, 2024
Abstract:There has been a large number of studies in interpretable and explainable ML for cybersecurity, in particular, for intrusion detection. Many of these studies have significant amount of overlapping and repeated evaluations and analysis. At the same time, these studies overlook crucial model, data, learning process, and utility related issues and many times completely disregard them. These issues include the use of overly complex and opaque ML models, unaccounted data imbalances and correlated features, inconsistent influential features across different explanation methods, the inconsistencies stemming from the constituents of a learning process, and the implausible utility of explanations. In this work, we empirically demonstrate these issues, analyze them and propose practical solutions in the context of feature-based model explanations. Specifically, we advise avoiding complex opaque models such as Deep Neural Networks and instead using interpretable ML models such as Decision Trees as the available intrusion datasets are not difficult for such interpretable models to classify successfully. Then, we bring attention to the binary classification metrics such as Matthews Correlation Coefficient (which are well-suited for imbalanced datasets. Moreover, we find that feature-based model explanations are most often inconsistent across different settings. In this respect, to further gauge the extent of inconsistencies, we introduce the notion of cross explanations which corroborates that the features that are determined to be impactful by one explanation method most often differ from those by another method. Furthermore, we show that strongly correlated data features and the constituents of a learning process, such as hyper-parameters and the optimization routine, become yet another source of inconsistent explanations. Finally, we discuss the utility of feature-based explanations.
Via

Mar 17, 2024
Abstract:In today's digital age, our dependence on IoT (Internet of Things) and IIoT (Industrial IoT) systems has grown immensely, which facilitates sensitive activities such as banking transactions and personal, enterprise data, and legal document exchanges. Cyberattackers consistently exploit weak security measures and tools. The Network Intrusion Detection System (IDS) acts as a primary tool against such cyber threats. However, machine learning-based IDSs, when trained on specific attack patterns, often misclassify new emerging cyberattacks. Further, the limited availability of attack instances for training a supervised learner and the ever-evolving nature of cyber threats further complicate the matter. This emphasizes the need for an adaptable IDS framework capable of recognizing and learning from unfamiliar/unseen attacks over time. In this research, we propose a one-class classification-driven IDS system structured on two tiers. The first tier distinguishes between normal activities and attacks/threats, while the second tier determines if the detected attack is known or unknown. Within this second tier, we also embed a multi-classification mechanism coupled with a clustering algorithm. This model not only identifies unseen attacks but also uses them for retraining them by clustering unseen attacks. This enables our model to be future-proofed, capable of evolving with emerging threat patterns. Leveraging one-class classifiers (OCC) at the first level, our approach bypasses the need for attack samples, addressing data imbalance and zero-day attack concerns and OCC at the second level can effectively separate unknown attacks from the known attacks. Our methodology and evaluations indicate that the presented framework exhibits promising potential for real-world deployments.
* Deakin University, Australia | This material is based upon work
supported by the Air Force Office of Scientific Research under award number
FA2386-23-1-4003
Via

Jan 07, 2024
Abstract:Network Intrusion Detection Systems (IDS) aim to detect the presence of an intruder by analyzing network packets arriving at an internet connected device. Data-driven deep learning systems, popular due to their superior performance compared to traditional IDS, depend on availability of high quality training data for diverse intrusion classes. A way to overcome this limitation is through transferable learning, where training for one intrusion class can lead to detection of unseen intrusion classes after deployment. In this paper, we provide a detailed study on the transferability of intrusion detection. We investigate practical federated learning configurations to enhance the transferability of intrusion detection. We propose two techniques to significantly improve the transferability of a federated intrusion detection system. The code for this work can be found at https://github.com/ghosh64/transferability.
* This manuscript has been accepted for publication in ICMLCN 2024
Via

May 27, 2024
Abstract:The exponential increase in Internet of Things (IoT) devices coupled with 6G pushing towards higher data rates and connected devices has sparked a surge in data. Consequently, harnessing the full potential of data-driven machine learning has become one of the important thrusts. In addition to the advancement in wireless technology, it is important to efficiently use the resources available and meet the users' requirements. Graph Neural Networks (GNNs) have emerged as a promising paradigm for effectively modeling and extracting insights which inherently exhibit complex network structures due to its high performance and accuracy, scalability, adaptability, and resource efficiency. There is a lack of a comprehensive survey that focuses on the applications and advances GNN has made in the context of IoT and Next Generation (NextG) networks. To bridge that gap, this survey starts by providing a detailed description of GNN's terminologies, architecture, and the different types of GNNs. Then we provide a comprehensive survey of the advancements in applying GNNs for IoT from the perspective of data fusion and intrusion detection. Thereafter, we survey the impact GNN has made in improving spectrum awareness. Next, we provide a detailed account of how GNN has been leveraged for networking and tactical systems. Through this survey, we aim to provide a comprehensive resource for researchers to learn more about GNN in the context of wireless networks, and understand its state-of-the-art use cases while contrasting to other machine learning approaches. Finally, we also discussed the challenges and wide range of future research directions to further motivate the use of GNN for IoT and NextG Networks.
Via
