Abstract:The generation of high-quality 3D environments is crucial for industries such as gaming, virtual reality, and cinema, yet remains resource-intensive due to the reliance on manual processes. This study performs a systematic review of existing generative AI techniques for 3D scene generation, analyzing their characteristics, strengths, limitations, and potential for improvement. By examining state-of-the-art approaches, it presents key challenges such as scene authenticity and the influence of textual inputs. Special attention is given to how AI can blend different stylistic domains while maintaining coherence, the impact of training data on output quality, and the limitations of current models. In addition, this review surveys existing evaluation metrics for assessing realism and explores how industry professionals incorporate AI into their workflows. The findings of this study aim to provide a comprehensive understanding of the current landscape and serve as a foundation for future research on AI-driven 3D content generation. Key findings include that advanced generative architectures enable high-quality 3D content creation at a high computational cost, effective multi-modal integration techniques like cross-attention and latent space alignment facilitate text-to-3D tasks, and the quality and diversity of training data combined with comprehensive evaluation metrics are critical to achieving scalable, robust 3D scene generation.
Abstract:The application of Artificial Intelligence has become a powerful approach to detecting software vulnerabilities. However, effective vulnerability detection relies on accurately capturing the semantic structure of code and its contextual relationships. Given that the same functionality can be implemented in various forms, a preprocessing tool that standardizes code representation is important. This tool must be efficient, adaptable across programming languages, and capable of supporting new transformations. To address this challenge, we build on the existing SCoPE framework and introduce SCoPE2, an enhanced version with improved performance. We compare both versions in terms of processing time and memory usage and evaluate their impact on a Large Language Model (LLM) for vulnerability detection. Our results show a 97.3\% reduction in processing time with SCoPE2, along with an improved F1-score for the LLM, solely due to the refined preprocessing approach.
Abstract:Deep Learning (DL) has emerged as a powerful tool for vulnerability detection, often outperforming traditional solutions. However, developing effective DL models requires large amounts of real-world data, which can be difficult to obtain in sufficient quantities. To address this challenge, DiverseVul dataset has been curated as the largest dataset of vulnerable and non-vulnerable C/C++ functions extracted exclusively from real-world projects. Its goal is to provide high-quality, large-scale samples for training DL models. However, during our study several inconsistencies were identified in the raw dataset while applying pre-processing techniques, highlighting the need for a refined version. In this work, we present a refined version of DiverseVul dataset, which is used to fine-tune a large language model, LLaMA 3.2, for vulnerability detection. Experimental results show that the use of pre-processing techniques led to an improvement in performance, with the model achieving an F1-Score of 66%, a competitive result when compared to our baseline, which achieved a 47% F1-Score in software vulnerability detection.
Abstract:The use of Machine Learning (ML) models in cybersecurity solutions requires high-quality data that is stripped of redundant, missing, and noisy information. By selecting the most relevant features, data integrity and model efficiency can be significantly improved. This work evaluates the feature sets provided by a combination of different feature selection methods, namely Information Gain, Chi-Squared Test, Recursive Feature Elimination, Mean Absolute Deviation, and Dispersion Ratio, in multiple IoT network datasets. The influence of the smaller feature sets on both the classification performance and the training time of ML models is compared, with the aim of increasing the computational efficiency of IoT intrusion detection. Overall, the most impactful features of each dataset were identified, and the ML models obtained higher computational efficiency while preserving a good generalization, showing little to no difference between the sets.
Abstract:The growing cybersecurity threats make it essential to use high-quality data to train Machine Learning (ML) models for network traffic analysis, without noisy or missing data. By selecting the most relevant features for cyber-attack detection, it is possible to improve both the robustness and computational efficiency of the models used in a cybersecurity system. This work presents a feature selection and consensus process that combines multiple methods and applies them to several network datasets. Two different feature sets were selected and were used to train multiple ML models with regular and adversarial training. Finally, an adversarial evasion robustness benchmark was performed to analyze the reliability of the different feature sets and their impact on the susceptibility of the models to adversarial examples. By using an improved dataset with more data diversity, selecting the best time-related features and a more specific feature set, and performing adversarial training, the ML models were able to achieve a better adversarially robust generalization. The robustness of the models was significantly improved without their generalization to regular traffic flows being affected, without increases of false alarms, and without requiring too many computational resources, which enables a reliable detection of suspicious activity and perturbed traffic flows in enterprise computer networks.
Abstract:As cyber-attacks become more sophisticated, improving the robustness of Machine Learning (ML) models must be a priority for enterprises of all sizes. To reliably compare the robustness of different ML models for cyber-attack detection in enterprise computer networks, they must be evaluated in standardized conditions. This work presents a methodical adversarial robustness benchmark of multiple decision tree ensembles with constrained adversarial examples generated from standard datasets. The robustness of regularly and adversarially trained RF, XGB, LGBM, and EBM models was evaluated on the original CICIDS2017 dataset, a corrected version of it designated as NewCICIDS, and the HIKARI dataset, which contains more recent network traffic. NewCICIDS led to models with a better performance, especially XGB and EBM, but RF and LGBM were less robust against the more recent cyber-attacks of HIKARI. Overall, the robustness of the models to adversarial cyber-attack examples was improved without their generalization to regular traffic being affected, enabling a reliable detection of suspicious activity without costly increases of false alarms.