Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.



In this paper, we propose Meeting recognizer Output Voting Error Reduction (MOVER), a novel system combination method for meeting recognition tasks. Although there are methods to combine the output of diarization (e.g., DOVER) or automatic speech recognition (ASR) systems (e.g., ROVER), MOVER is the first approach that can combine the outputs of meeting recognition systems that differ in terms of both diarization and ASR. MOVER combines hypotheses with different time intervals and speaker labels through a five-stage process that includes speaker alignment, segment grouping, word and timing combination, etc. Experimental results on the CHiME-8 DASR task and the multi-channel track of the NOTSOFAR-1 task demonstrate that MOVER can successfully combine multiple meeting recognition systems with diverse diarization and recognition outputs, achieving relative tcpWER improvements of 9.55 % and 8.51 % over the state-of-the-art systems for both tasks.
Automatic Speech Recognition (ASR) has become an integral component of modern technology, powering applications such as voice-activated assistants, transcription services, and accessibility tools. Yet ASR systems continue to struggle with the inherent variability of human speech, such as accents, dialects, and speaking styles, as well as environmental interference, including background noise. Moreover, domain-specific conversations often employ specialized terminology, which can exacerbate transcription errors. These shortcomings not only degrade raw ASR accuracy but also propagate mistakes through subsequent natural language processing pipelines. Because redesigning an ASR model is costly and time-consuming, non-intrusive refinement techniques that leave the model's architecture unchanged have become increasingly popular. In this survey, we systematically review current non-intrusive refinement approaches and group them into five classes: fusion, re-scoring, correction, distillation, and training adjustment. For each class, we outline the main methods, advantages, drawbacks, and ideal application scenarios. Beyond method classification, this work surveys adaptation techniques aimed at refining ASR in domain-specific contexts, reviews commonly used evaluation datasets along with their construction processes, and proposes a standardized set of metrics to facilitate fair comparisons. Finally, we identify open research gaps and suggest promising directions for future work. By providing this structured overview, we aim to equip researchers and practitioners with a clear foundation for developing more robust, accurate ASR refinement pipelines.
Fast Automatic Speech Recognition (ASR) is critical for latency-sensitive applications such as real-time captioning and meeting transcription. However, truly parallel ASR decoding remains challenging due to the sequential nature of autoregressive (AR) decoders and the context limitations of non-autoregressive (NAR) methods. While modern ASR encoders can process up to 30 seconds of audio at once, AR decoders still generate tokens sequentially, creating a latency bottleneck. We propose Whisfusion, the first framework to fuse a pre-trained Whisper encoder with a text diffusion decoder. This NAR architecture resolves the AR latency bottleneck by processing the entire acoustic context in parallel at every decoding step. A lightweight cross-attention adapter trained via parameter-efficient fine-tuning (PEFT) bridges the two modalities. We also introduce a batch-parallel, multi-step decoding strategy that improves accuracy by increasing the number of candidates with minimal impact on speed. Fine-tuned solely on LibriSpeech (960h), Whisfusion achieves a lower WER than Whisper-tiny (8.3% vs. 9.7%), and offers comparable latency on short audio. For longer utterances (>20s), it is up to 2.6x faster than the AR baseline, establishing a new, efficient operating point for long-form ASR. The implementation and training scripts are available at https://github.com/taeyoun811/Whisfusion.
This study proposes the dual technological innovation framework, including a cross-modal differ entiated quantization framework for vision-language models (VLMs) and a scene-aware vectorized memory multi-agent system for visually impaired assistance. The modular framework was developed implementing differentiated processing strategies, effectively reducing memory requirements from 38GB to 16GB while maintaining model performance. The multi-agent architecture combines scene classification, vectorized memory, and multimodal interaction, enabling persistent storage and efficient retrieval of scene memories. Through perception-memory-reasoning workflows, the system provides environmental information beyond the current view using historical memories. Experiments show the quantized 19B-parameter model only experiences a 2.05% performance drop on MMBench and maintains 63.7 accuracy on OCR-VQA (original: 64.9), outperforming smaller models with equivalent memory requirements like the Molmo-7B series. The system maintains response latency between 2.83-3.52 seconds from scene analysis to initial speech output, substantially faster than non-streaming methods. This research advances computational efficiency and assistive technology, offering visually impaired users comprehensive real-time assistance in scene perception, text recognition, and navigation.
Large language models (LLMs) have demonstrated potential in handling spoken inputs for high-resource languages, reaching state-of-the-art performance in various tasks. However, their applicability is still less explored in low-resource settings. This work investigates the use of Speech LLMs for low-resource Automatic Speech Recognition using the SLAM-ASR framework, where a trainable lightweight projector connects a speech encoder and a LLM. Firstly, we assess training data volume requirements to match Whisper-only performance, re-emphasizing the challenges of limited data. Secondly, we show that leveraging mono- or multilingual projectors pretrained on high-resource languages reduces the impact of data scarcity, especially with small training sets. Using multilingual LLMs (EuroLLM, Salamandra) with whisper-large-v3-turbo, we evaluate performance on several public benchmarks, providing insights for future research on optimizing Speech LLMs for low-resource languages and multilinguality.
Large language model (LLM)-based automatic speech recognition (ASR) achieves strong performance but often incurs high computational costs. This work investigates how to obtain the best LLM-ASR performance efficiently. Through comprehensive and controlled experiments, we find that pretraining the speech encoder before integrating it with the LLM leads to significantly better scaling efficiency than the standard practice of joint post-training of LLM-ASR. Based on this insight, we propose a new multi-stage LLM-ASR training strategy, EFIN: Encoder First Integration. Among all training strategies evaluated, EFIN consistently delivers better performance (relative to 21.1% CERR) with significantly lower computation budgets (49.9% FLOPs). Furthermore, we derive a scaling law that approximates ASR error rates as a computation function, providing practical guidance for LLM-ASR scaling.
The Speaker Diarization and Recognition (SDR) task aims to predict "who spoke when and what" within an audio clip, which is a crucial task in various real-world multi-speaker scenarios such as meeting transcription and dialogue systems. Existing SDR systems typically adopt a cascaded framework, combining multiple modules such as speaker diarization (SD) and automatic speech recognition (ASR). The cascaded systems suffer from several limitations, such as error propagation, difficulty in handling overlapping speech, and lack of joint optimization for exploring the synergy between SD and ASR tasks. To address these limitations, we introduce SpeakerLM, a unified multimodal large language model for SDR that jointly performs SD and ASR in an end-to-end manner. Moreover, to facilitate diverse real-world scenarios, we incorporate a flexible speaker registration mechanism into SpeakerLM, enabling SDR under different speaker registration settings. SpeakerLM is progressively developed with a multi-stage training strategy on large-scale real data. Extensive experiments show that SpeakerLM demonstrates strong data scaling capability and generalizability, outperforming state-of-the-art cascaded baselines on both in-domain and out-of-domain public SDR benchmarks. Furthermore, experimental results show that the proposed speaker registration mechanism effectively ensures robust SDR performance of SpeakerLM across diverse speaker registration conditions and varying numbers of registered speakers.
Paralinguistic vocalizations-including non-verbal sounds like laughter and breathing, as well as lexicalized interjections such as "uhm" and "oh"-are integral to natural spoken communication. Despite their importance in conveying affect, intent, and interactional cues, such cues remain largely overlooked in conventional automatic speech recognition (ASR) and text-to-speech (TTS) systems. We present NVSpeech, an integrated and scalable pipeline that bridges the recognition and synthesis of paralinguistic vocalizations, encompassing dataset construction, ASR modeling, and controllable TTS. (1) We introduce a manually annotated dataset of 48,430 human-spoken utterances with 18 word-level paralinguistic categories. (2) We develop the paralinguistic-aware ASR model, which treats paralinguistic cues as inline decodable tokens (e.g., "You're so funny [Laughter]"), enabling joint lexical and non-verbal transcription. This model is then used to automatically annotate a large corpus, the first large-scale Chinese dataset of 174,179 utterances (573 hours) with word-level alignment and paralingustic cues. (3) We finetune zero-shot TTS models on both human- and auto-labeled data to enable explicit control over paralinguistic vocalizations, allowing context-aware insertion at arbitrary token positions for human-like speech synthesis. By unifying the recognition and generation of paralinguistic vocalizations, NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin, integrating recognition and synthesis in a scalable and controllable manner. Dataset and audio demos are available at https://nvspeech170k.github.io/.
Indias linguistic diversity poses significant challenges for developing inclusive Automatic Speech Recognition (ASR) systems. Traditional multilingual models, which require simultaneous access to all language data, are impractical due to the sequential arrival of data and privacy constraints. Continual Learning (CL) offers a solution by enabling models to learn new languages sequentially without catastrophically forgetting previously learned knowledge. This paper investigates CL for ASR on Indian languages using a subset of the IndicSUPERB benchmark. We employ a Conformer-based hybrid RNN-T/CTC model, initially pretrained on Hindi, which is then incrementally trained on eight additional Indian languages, for a total sequence of nine languages. We evaluate three prominent regularization- and distillation-based CL strategies: Elastic Weight Consolidation (EWC), Memory Aware Synapses (MAS), and Learning without Forgetting (LwF), selected for their suitability in no-replay, privacy-conscious scenarios. Performance is analyzed using Word Error Rate (WER) for both RNN-T and CTC paths on clean and noisy data, as well as knowledge retention via Backward Transfer. We also explore the impact of varying the number of training epochs (1, 2, 5, and 10) per task. Results, compared against naive fine-tuning, demonstrate CLs effectiveness in mitigating forgetting, making it a promising approach for scalable ASR in diverse Indian languages under realistic constraints. The code is available at: https://github.com/FrozenWolf-Cyber/Indic-CL-ASR




Current approaches for large audio language models (LALMs) often rely on closed data sources or proprietary models, limiting their generalization and accessibility. This paper introduces MiDashengLM, a novel open audio-language model designed for efficient and comprehensive audio understanding through the use of general audio captions using our novel ACAVCaps training dataset. MiDashengLM exclusively relies on publicly available pretraining and supervised fine-tuning (SFT) datasets, ensuring full transparency and reproducibility. At its core, MiDashengLM integrates Dasheng, an open-source audio encoder, specifically engineered to process diverse auditory information effectively. Unlike previous works primarily focused on Automatic Speech Recognition (ASR) based audio-text alignment, our strategy centers on general audio captions, fusing speech, sound and music information into one textual representation, enabling a holistic textual representation of complex audio scenes. Lastly, MiDashengLM provides an up to 4x speedup in terms of time-to-first-token (TTFT) and up to 20x higher throughput than comparable models. Checkpoints are available online at https://huggingface.co/mispeech/midashenglm-7b and https://github.com/xiaomi-research/dasheng-lm.