Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.




Pre-trained automatic speech recognition (ASR) models have demonstrated strong performance on a variety of tasks. However, their performance can degrade substantially when the input audio comes from different recording channels. While previous studies have demonstrated this phenomenon, it is often attributed to the mismatch between training and testing corpora. This study argues that variations in speech characteristics caused by different recording channels can fundamentally harm ASR performance. To address this limitation, we propose a normalization technique designed to mitigate the impact of channel variation by aligning internal feature representations in the ASR model with those derived from a clean reference channel. This approach significantly improves ASR performance on previously unseen channels and languages, highlighting its ability to generalize across channel and language differences.
In this study, we revisit key training strategies in machine learning often overlooked in favor of deeper architectures. Specifically, we explore balancing strategies, activation functions, and fine-tuning techniques to enhance speech emotion recognition (SER) in naturalistic conditions. Our findings show that simple modifications improve generalization with minimal architectural changes. Our multi-modal fusion model, integrating these optimizations, achieves a valence CCC of 0.6953, the best valence score in Task 2: Emotional Attribute Regression. Notably, fine-tuning RoBERTa and WavLM separately in a single-modality setting, followed by feature fusion without training the backbone extractor, yields the highest valence performance. Additionally, focal loss and activation functions significantly enhance performance without increasing complexity. These results suggest that refining core components, rather than deepening models, leads to more robust SER in-the-wild.
Sign language (SL) is an essential communication form for hearing-impaired and deaf people, enabling engagement within the broader society. Despite its significance, limited public awareness of SL often leads to inequitable access to educational and professional opportunities, thereby contributing to social exclusion, particularly in Saudi Arabia, where over 84,000 individuals depend on Saudi Sign Language (SSL) as their primary form of communication. Although certain technological approaches have helped to improve communication for individuals with hearing impairments, there continues to be an urgent requirement for more precise and dependable translation techniques, especially for Arabic sign language variants like SSL. Most state-of-the-art solutions have primarily focused on non-Arabic sign languages, resulting in a considerable absence of resources dedicated to Arabic sign language, specifically SSL. The complexity of the Arabic language and the prevalence of isolated sign language datasets that concentrate on individual words instead of continuous speech contribute to this issue. To address this gap, our research represents an important step in developing SSL resources. To address this, we introduce the first continuous Saudi Sign Language dataset called KAU-CSSL, focusing on complete sentences to facilitate further research and enable sophisticated recognition systems for SSL recognition and translation. Additionally, we propose a transformer-based model, utilizing a pretrained ResNet-18 for spatial feature extraction and a Transformer Encoder with Bidirectional LSTM for temporal dependencies, achieving 99.02\% accuracy at signer dependent mode and 77.71\% accuracy at signer independent mode. This development leads the way to not only improving communication tools for the SSL community but also making a substantial contribution to the wider field of sign language.
Background: Depression is a major public health concern, affecting an estimated five percent of the global population. Early and accurate diagnosis is essential to initiate effective treatment, yet recognition remains challenging in many clinical contexts. Speech, language, and behavioral cues collected during patient interviews may provide objective markers that support clinical assessment. Methods: We developed a diagnostic approach that integrates features derived from patient interviews, including speech patterns, linguistic characteristics, and structured clinical information. Separate models were trained for each modality and subsequently combined through multimodal fusion to reflect the complexity of real-world psychiatric assessment. Model validity was assessed with established performance metrics, and further evaluated using calibration and decision-analytic approaches to estimate potential clinical utility. Results: The multimodal model achieved superior diagnostic accuracy compared to single-modality models, with an AUROC of 0.88 and an F1-score of 0.75. Importantly, the fused model demonstrated good calibration and offered higher net clinical benefit compared to baseline strategies, highlighting its potential to assist clinicians in identifying patients with depression more reliably. Conclusion: Multimodal analysis of patient interviews using machine learning may serve as a valuable adjunct to psychiatric evaluation. By combining speech, language, and clinical features, this approach provides a robust framework that could enhance early detection of depressive disorders and support evidence-based decision-making in mental healthcare.
While beam search improves speech recognition quality over greedy decoding, standard implementations are slow, often sequential, and CPU-bound. To fully leverage modern hardware capabilities, we present a novel open-source FlexCTC toolkit for fully GPU-based beam decoding, designed for Connectionist Temporal Classification (CTC) models. Developed entirely in Python and PyTorch, it offers a fast, user-friendly, and extensible alternative to traditional C++, CUDA, or WFST-based decoders. The toolkit features a high-performance, fully batched GPU implementation with eliminated CPU-GPU synchronization and minimized kernel launch overhead via CUDA Graphs. It also supports advanced contextualization techniques, including GPU-powered N-gram language model fusion and phrase-level boosting. These features enable accurate and efficient decoding, making them suitable for both research and production use.
Voice-controlled interfaces can support older adults in clinical contexts, with chatbots being a prime example, but reliable Automatic Speech Recognition (ASR) for underrepresented groups remains a bottleneck. This study evaluates state-of-the-art ASR models on language use of older Dutch adults, who interacted with the Welzijn.AI chatbot designed for geriatric contexts. We benchmark generic multilingual ASR models, and models fine-tuned for Dutch spoken by older adults, while also considering processing speed. Our results show that generic multilingual models outperform fine-tuned models, which suggests recent ASR models can generalise well out of the box to realistic datasets. Furthermore, our results suggest that truncating existing architectures is helpful in balancing the accuracy-speed trade-off, though we also identify some cases with high WER due to hallucinations.




Recognizing specific key phrases is an essential task for contextualized Automatic Speech Recognition (ASR). However, most existing context-biasing approaches have limitations associated with the necessity of additional model training, significantly slow down the decoding process, or constrain the choice of the ASR system type. This paper proposes a universal ASR context-biasing framework that supports all major types: CTC, Transducers, and Attention Encoder-Decoder models. The framework is based on a GPU-accelerated word boosting tree, which enables it to be used in shallow fusion mode for greedy and beam search decoding without noticeable speed degradation, even with a vast number of key phrases (up to 20K items). The obtained results showed high efficiency of the proposed method, surpassing the considered open-source context-biasing approaches in accuracy and decoding speed. Our context-biasing framework is open-sourced as a part of the NeMo toolkit.
Intent recognition (IR) for speech commands is essential for artificial intelligence (AI) assistant systems; however, most existing approaches are limited to short commands and are predominantly developed for English. This paper addresses these limitations by focusing on IR from speech by elderly German speakers. We propose a novel approach that combines an adapted Whisper ASR model, fine-tuned on elderly German speech (SVC-de), with Transformer-based language models trained on synthetic text datasets generated by three well-known large language models (LLMs): LeoLM, Llama3, and ChatGPT. To evaluate the robustness of our approach, we generate synthetic speech with a text-to-speech model and conduct extensive cross-dataset testing. Our results show that synthetic LLM-generated data significantly boosts classification performance and robustness to different speaking styles and unseen vocabulary. Notably, we find that LeoLM, a smaller, domain-specific 13B LLM, surpasses the much larger ChatGPT (175B) in dataset quality for German intent recognition. Our approach demonstrates that generative AI can effectively bridge data gaps in low-resource domains. We provide detailed documentation of our data generation and training process to ensure transparency and reproducibility.
In full-duplex speech interaction systems, effective Acoustic Echo Cancellation (AEC) is crucial for recovering echo-contaminated speech. This paper presents a neural network-based AEC solution to address challenges in mobile scenarios with varying hardware, nonlinear distortions and long latency. We first incorporate diverse data augmentation strategies to enhance the model's robustness across various environments. Moreover, progressive learning is employed to incrementally improve AEC effectiveness, resulting in a considerable improvement in speech quality. To further optimize AEC's downstream applications, we introduce a novel post-processing strategy employing tailored parameters designed specifically for tasks such as Voice Activity Detection (VAD) and Automatic Speech Recognition (ASR), thus enhancing their overall efficacy. Finally, our method employs a small-footprint model with streaming inference, enabling seamless deployment on mobile devices. Empirical results demonstrate effectiveness of the proposed method in Echo Return Loss Enhancement and Perceptual Evaluation of Speech Quality, alongside significant improvements in both VAD and ASR results.
Automatic speech recognition (ASR) plays a vital role in enabling natural human-machine interaction across applications such as virtual assistants, industrial automation, customer support, and real-time transcription. However, developing accurate ASR systems for low-resource languages like Arabic remains a significant challenge due to limited labeled data and the linguistic complexity introduced by diverse dialects. In this work, we present a scalable training pipeline that combines weakly supervised learning with supervised fine-tuning to develop a robust Arabic ASR model. In the first stage, we pretrain the model on 15,000 hours of weakly labeled speech covering both Modern Standard Arabic (MSA) and various Dialectal Arabic (DA) variants. In the subsequent stage, we perform continual supervised fine-tuning using a mixture of filtered weakly labeled data and a small, high-quality annotated dataset. Our approach achieves state-of-the-art results, ranking first in the multi-dialectal Arabic ASR challenge. These findings highlight the effectiveness of weak supervision paired with fine-tuning in overcoming data scarcity and delivering high-quality ASR for low-resource, dialect-rich languages.