Information extraction is the process of automatically extracting structured information from unstructured text data.
In this letter, we investigate the fundamental limits of localization in fluid antenna systems (FAS) utilizing a Fisher-information-theoretic framework. We develop a unified model to quantify the localization information extractable from time-of-arrival (ToA) and angle-of-arrival (AoA) measurements, explicitly capturing the synthetic aperture effects induced by FAS. Closed-form expressions are derived for the equivalent Fisher information matrix (EFIM) and the corresponding positioning error bound (PEB) in both user-side and base-station (BS)-side FAS configurations. Also, we propose optimal port-selection strategies based on greedy algorithms and convex relaxation to maximize the information gain under a constrained number of activated ports. Numerical results demonstrate that the proposed port-selection schemes can substantially tighten the PEB compared with random activation, thereby confirming the strong potential of FAS to enable high-precision localization. These results offer analytical insights and practical design guidelines for FAS-aided positioning in future-generation wireless networks
Recent years have witnessed significant advancements in machine learning methods on graphs. However, transferring knowledge effectively from one graph to another remains a critical challenge. This highlights the need for algorithms capable of applying information extracted from a source graph to an unlabeled target graph, a task known as unsupervised graph domain adaptation (GDA). One key difficulty in unsupervised GDA is conditional shift, which hinders transferability. In this paper, we show that conditional shift can be observed only if there exists local dependencies among node features. To support this claim, we perform a rigorous analysis and also further provide generalization bounds of GDA when dependent node features are modeled using markov chains. Guided by the theoretical findings, we propose to improve GDA by decorrelating node features, which can be specifically implemented through decorrelated GCN layers and graph transformer layers. Our experimental results demonstrate the effectiveness of this approach, showing not only substantial performance enhancements over baseline GDA methods but also clear visualizations of small intra-class distances in the learned representations. Our code is available at https://github.com/TechnologyAiGroup/DFT
Text classification problems, such as gender classification from a blog, have been a well-matured research area that has been well studied using machine learning algorithms. It has several application domains in market analysis, customer recommendation, and recommendation systems. This study presents a comparative analysis of the widely used machine learning algorithms, namely Support Vector Machines (SVM), Naive Bayes (NB), Logistic Regression (LR), AdaBoost, XGBoost, and an SVM variant (SVM_R) with neuro-symbolic AI (NeSy). The paper also explores the effect of text representations such as TF-IDF, the Universal Sentence Encoder (USE), and RoBERTa. Additionally, various feature extraction techniques, including Chi-Square, Mutual Information, and Principal Component Analysis, are explored. Building on these, we introduce a comparative analysis of the machine learning and deep learning approaches in comparison to the NeSy. The experimental results show that the use of the NeSy approach matched strong MLP results despite a limited dataset. Future work on this research will expand the knowledge base, the scope of embedding types, and the hyperparameter configuration to further study the effectiveness of the NeSy approach.
Most existing video moment retrieval methods rely on temporal sequences of frame- or clip-level features that primarily encode global visual and semantic information. However, such representations often fail to capture fine-grained object semantics and appearance, which are crucial for localizing moments described by object-oriented queries involving specific entities and their interactions. In particular, temporal dynamics at the object level have been largely overlooked, limiting the effectiveness of existing approaches in scenarios requiring detailed object-level reasoning. To address this limitation, we propose a novel object-centric framework for moment retrieval. Our method first extracts query-relevant objects using a scene graph parser and then generates scene graphs from video frames to represent these objects and their relationships. Based on the scene graphs, we construct object-level feature sequences that encode rich visual and semantic information. These sequences are processed by a relational tracklet transformer, which models spatio-temporal correlations among objects over time. By explicitly capturing object-level state changes, our framework enables more accurate localization of moments aligned with object-oriented queries. We evaluated our method on three benchmarks: Charades-STA, QVHighlights, and TACoS. Experimental results demonstrate that our method outperforms existing state-of-the-art methods across all benchmarks.
We present ATLAS (Adaptive Topology-based Learning at Scale for Homophilic and Heterophilic Graphs), a novel graph learning algorithm that addresses two important challenges in graph neural networks (GNNs). First, the accuracy of GNNs degrades when the graph is heterophilic. Second, iterative feature aggregation limits the scalability of GNNs to large graphs. We address these challenges by extracting topological information about graph communities at multiple levels of refinement, concatenating community assignments to the feature vector, and applying multilayer perceptrons (MLPs) to the resulting representation. This provides topological context about nodes and their neighborhoods without invoking aggregation. Because MLPs are typically more scalable than GNNs, our approach applies to large graphs without the need for sampling. Across a wide set of graphs, ATLAS achieves comparable accuracy to baseline methods, with gains as high as 20 percentage points over GCN for heterophilic graphs with negative structural bias and 11 percentage points over MLP for homophilic graphs. Furthermore, we show how multi-resolution community features systematically modulate performance in both homophilic and heterophilic settings, opening a principled path toward explainable graph learning.
Although Large language Model (LLM)-powered information extraction (IE) systems have shown impressive capabilities, current fine-tuning paradigms face two major limitations: high training costs and difficulties in aligning with LLM preferences. To address these issues, we propose a novel universal IE paradigm, the Self-Correcting Iterative Refinement (SCIR) framework, along with a Multi-task Bilingual (Chinese-English) Self-Correcting (MBSC) dataset containing over 100,000 entries. The SCIR framework achieves plug-and-play compatibility with existing LLMs and IE systems through its Dual-Path Self-Correcting module and feedback-driven optimization, thereby significantly reducing training costs. Concurrently, the MBSC dataset tackles the challenge of preference alignment by indirectly distilling GPT-4's capabilities into IE result detection models. Experimental results demonstrate that SCIR outperforms state-of-the-art IE methods across three key tasks: named entity recognition, relation extraction, and event extraction, achieving a 5.27 percent average improvement in span-based Micro-F1 while reducing training costs by 87 percent compared to baseline approaches. These advancements not only enhance the flexibility and accuracy of IE systems but also pave the way for lightweight and efficient IE paradigms.
This study presents a hybrid deep learning architecture that integrates LSTM, CNN, and an Attention mechanism to enhance the classification of web content based on text. Pretrained GloVe embeddings are used to represent words as dense vectors that preserve semantic similarity. The CNN layer extracts local n-gram patterns and lexical features, while the LSTM layer models long-range dependencies and sequential structure. The integrated Attention mechanism enables the model to focus selectively on the most informative parts of the input sequence. A 5-fold cross-validation setup was used to assess the robustness and generalizability of the proposed solution. Experimental results show that the hybrid LSTM-CNN-Attention model achieved outstanding performance, with an accuracy of 0.98, precision of 0.94, recall of 0.92, and F1-score of 0.93. These results surpass the performance of baseline models based solely on CNNs, LSTMs, or transformer-based classifiers such as BERT. The combination of neural network components enabled the model to effectively capture both fine-grained text structures and broader semantic context. Furthermore, the use of GloVe embeddings provided an efficient and effective representation of textual data, making the model suitable for integration into systems with real-time or near-real-time requirements. The proposed hybrid architecture demonstrates high effectiveness in text-based web content classification, particularly in tasks requiring both syntactic feature extraction and semantic interpretation. By combining presented mechanisms, the model addresses the limitations of individual architectures and achieves improved generalization. These findings support the broader use of hybrid deep learning approaches in NLP applications, especially where complex, unstructured textual data must be processed and classified with high reliability.
Many large language models (LLMs) are trained on a massive body of knowledge present on the Internet. Darth Vecdor (DV) was designed to extract this knowledge into a structured, terminology-mapped, SQL database ("knowledge base" or "knowledge graph"). Knowledge graphs may be useful in many domains, including healthcare. Although one might query an LLM directly rather than a SQL-based knowledge graph, concerns such as cost, speed, safety, and confidence may arise, especially in high-volume operations. These may be mitigated when the information is pre-extracted from the LLM and becomes query-able through a standard database. However, the author found the need to address several issues. These included erroneous, off-topic, free-text, overly general, and inconsistent LLM responses, as well as allowing for multi-element responses. DV was built with features intended to mitigate these issues. To facilitate ease of use, and to allow for prompt engineering by those with domain expertise but little technical background, DV provides a simple, browser-based graphical user interface. DV has been released as free, open-source, extensible software, on an "as is" basis, without warranties or conditions of any kind, either express or implied. Users need to be cognizant of the potential risks and benefits of using DV and its outputs, and users are responsible for ensuring any use is safe and effective. DV should be assumed to have bugs, potentially very serious ones. However, the author hopes that appropriate use of current and future versions of DV and its outputs can help improve healthcare.
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
Current token-sequence-based Large Language Models (LLMs) are not well-suited for directly processing 3D Boundary Representation (Brep) models that contain complex geometric and topological information. We propose BrepLLM, the first framework that enables LLMs to parse and reason over raw Brep data, bridging the modality gap between structured 3D geometry and natural language. BrepLLM employs a two-stage training pipeline: Cross-modal Alignment Pre-training and Multi-stage LLM Fine-tuning. In the first stage, an adaptive UV sampling strategy converts Breps into graphs representation with geometric and topological information. We then design a hierarchical BrepEncoder to extract features from geometry (i.e., faces and edges) and topology, producing both a single global token and a sequence of node tokens. Then we align the global token with text embeddings from a frozen CLIP text encoder (ViT-L/14) via contrastive learning. In the second stage, we integrate the pretrained BrepEncoder into an LLM. We then align its sequence of node tokens using a three-stage progressive training strategy: (1) training an MLP-based semantic mapping from Brep representation to 2D with 2D-LLM priors. (2) performing fine-tuning of the LLM. (3) designing a Mixture-of-Query Experts (MQE) to enhance geometric diversity modeling. We also construct Brep2Text, a dataset comprising 269,444 Brep-text question-answer pairs. Experiments show that BrepLLM achieves state-of-the-art (SOTA) results on 3D object classification and captioning tasks.