Information extraction is the process of automatically extracting structured information from unstructured text data.
Large language models (LLMs) demonstrate robust capabilities across diverse research domains. However, their performance in universal information extraction (UIE) remains insufficient, especially when tackling structured output scenarios that involve complex schema descriptions and require multi-step reasoning. While existing approaches enhance the performance of LLMs through in-context learning and instruction tuning, significant limitations nonetheless persist. To enhance the model's generalization ability, we propose integrating reinforcement learning (RL) with multi-perspective reasoning for information extraction (IE) tasks. Our work transitions LLMs from passive extractors to active reasoners, enabling them to understand not only what to extract but also how to reason. Experiments conducted on multiple IE benchmarks demonstrate that MR-UIE consistently elevates extraction accuracy across domains and surpasses state-of-the-art methods on several datasets. Furthermore, incorporating multi-perspective reasoning into RL notably enhances generalization in complex IE tasks, underscoring the critical role of reasoning in challenging scenarios.
The Anna Karenina Principle (AKP) holds that success requires satisfying a small set of essential conditions, whereas failure takes diverse forms. We test AKP, its reverse, and two further patterns described as ordered and noisy across novels, online encyclopedias, research papers, and movies. Texts are represented as sequences of functional blocks, and convergence is assessed in transition order and position. Results show that structural principles vary by medium: novels follow reverse AKP in order, Wikipedia combines AKP with ordered patterns, academic papers display reverse AKP in order but remain noisy in position, and movies diverge by genre. Success therefore depends on structural constraints that are specific to each medium, while failure assumes different shapes across domains.
Characterizing the geometry of an object orbiting around a star from its transit light curve is a powerful tool to uncover various complex phenomena. This problem is inherently ill-posed, since similar or identical light curves can be produced by multiple different shapes. In this study, we investigate the extent to which the features of a shape can be embedded in a transit light curve. We generate a library of two-dimensional random shapes and simulate their transit light curves with light curve simulator, Yuti. Each shape is decomposed into a series of elliptical components expressed in the form of Fourier coefficients that adds increasingly diminishing perturbations to an ideal ellipse. We train deep neural networks to predict these Fourier coefficients directly from simulated light curves. Our results demonstrate that the neural network can successfully reconstruct the low-order ellipses, which describe overall shape, orientation and large-scale perturbations. For higher order ellipses the scale is successfully determined but the inference of eccentricity and orientation is limited, demonstrating the extent of shape information in the light curve. We explore the impact of non-convex shape features in reconstruction, and show its dependence on shape orientation. The level of reconstruction achieved by the neural network underscores the utility of using light curves as a means to extract geometric information from transiting systems.
This paper shows how a multimodal large language model (MLLM) can expand urban measurement capacity and support tracking of place-based policy interventions. Using a structured, reason-then-estimate pipeline on street-view imagery, GPT-4o infers neighborhood poverty and tree canopy, which we embed in a quasi-experimental design evaluating the legacy of 1930s redlining. GPT-4o recovers the expected adverse socio-environmental legacy effects of redlining, with estimates statistically indistinguishable from authoritative sources, and it outperforms a conventional pixel-based segmentation baseline-consistent with the idea that holistic scene reasoning extracts higher-order information beyond object counts alone. These results position MLLMs as policy-grade instruments for neighborhood measurement and motivate broader validation across policy-evaluation settings.
Current multi-object tracking (MOT) algorithms typically overlook issues inherent in low-quality videos, leading to significant degradation in tracking performance when confronted with real-world image deterioration. Therefore, advancing the application of MOT algorithms in real-world low-quality video scenarios represents a critical and meaningful endeavor. To address the challenges posed by low-quality scenarios, inspired by vision-language models, this paper proposes a Visual Semantic Enhancement-guided Multi-Object Tracking framework (VSE-MOT). Specifically, we first design a tri-branch architecture that leverages a vision-language model to extract global visual semantic information from images and fuse it with query vectors. Subsequently, to further enhance the utilization of visual semantic information, we introduce the Multi-Object Tracking Adapter (MOT-Adapter) and the Visual Semantic Fusion Module (VSFM). The MOT-Adapter adapts the extracted global visual semantic information to suit multi-object tracking tasks, while the VSFM improves the efficacy of feature fusion. Through extensive experiments, we validate the effectiveness and superiority of the proposed method in real-world low-quality video scenarios. Its tracking performance metrics outperform those of existing methods by approximately 8% to 20%, while maintaining robust performance in conventional scenarios.
Deploying large language models (LLMs) for structured data extraction in domains such as financial compliance reporting, legal document analytics, and multilingual knowledge base construction is often impractical for smaller teams due to the high cost of running large architectures and the difficulty of preparing large, high-quality datasets. Most recent instruction-tuning studies focus on seven-billion-parameter or larger models, leaving limited evidence on whether much smaller models can work reliably under low-resource, multi-task conditions. This work presents ETLCH, a billion-parameter LLaMA-based model fine-tuned with low-rank adaptation on only a few hundred to one thousand samples per task for JSON extraction, knowledge graph extraction, and named entity recognition. Despite its small scale, ETLCH outperforms strong baselines across most evaluation metrics, with substantial gains observed even at the lowest data scale. These findings demonstrate that well-tuned small models can deliver stable and accurate structured outputs at a fraction of the computational cost, enabling cost-effective and reliable information extraction pipelines in resource-constrained environments.
Traditional query expansion techniques for addressing vocabulary mismatch problems in information retrieval are context-sensitive and may lead to performance degradation. As an alternative, document expansion research has gained attention, but existing methods such as Doc2Query have limitations including excessive preprocessing costs, increased index size, and reliability issues with generated content. To mitigate these problems and seek more structured and efficient alternatives, this study proposes a method that divides documents into chunk units and generates textual data for each chunk to simultaneously improve retrieval efficiency and accuracy. The proposed "Chunk Knowledge Generation Model" adopts a T5-based multi-task learning structure that simultaneously generates titles and candidate questions from each document chunk while extracting keywords from user queries. This approach maximizes computational efficiency by generating and extracting three types of semantic information in parallel through a single encoding and two decoding processes. The generated data is utilized as additional information in the retrieval system. GPT-based evaluation on 305 query-document pairs showed that retrieval using the proposed model achieved 95.41% accuracy at Top@10, demonstrating superior performance compared to document chunk-level retrieval. This study contributes by proposing an approach that simultaneously generates titles and candidate questions from document chunks for application in retrieval pipelines, and provides empirical evidence applicable to large-scale information retrieval systems by demonstrating improved retrieval accuracy through qualitative evaluation.
In the age of information overload, content management for online news articles relies on efficient summarization to enhance accessibility and user engagement. This article addresses the challenge of extractive text summarization by employing advanced machine learning techniques to generate concise and coherent summaries while preserving the original meaning. Using the Cornell Newsroom dataset, comprising 1.3 million article-summary pairs, we developed a pipeline leveraging BERT embeddings to transform textual data into numerical representations. By framing the task as a binary classification problem, we explored various models, including logistic regression, feed-forward neural networks, and long short-term memory (LSTM) networks. Our findings demonstrate that LSTM networks, with their ability to capture sequential dependencies, outperform baseline methods like Lede-3 and simpler models in F1 score and ROUGE-1 metrics. This study underscores the potential of automated summarization in improving content management systems for online news platforms, enabling more efficient content organization and enhanced user experiences.
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding.
Integrated sensing and communication (ISAC) is a promising technique for expanding the functionalities of wireless networks with enhanced spectral efficiency. The 3rd Generation Partnership Project (3GPP) has defined six basic sensing operation modes in wireless networks. To further enhance the sensing capability of wireless networks, this paper proposes a new sensing operation mode, i.e., the base station (BS) and user equipment (UE) cooperative sensing. Specifically, after decoding the communication data, the UE further processes the received signal to extract the target sensing information. We propose an efficient algorithm for fusing the sensing results obtained by the BS and UE, by exploiting the geometric relationship among BS, UE and targets as well as the expected sensing quality in the BS monostatic and BS-UE bistatic sensing. The results show that the proposed data fusion method for cooperative sensing can effectively improve the position and velocity estimation accuracy of multiple targets, and provide a new approach on the expansion of the sensing pattern.