Financial time series forecasting is fundamentally an information fusion challenge, yet most existing models rely on static architectures that struggle to integrate heterogeneous knowledge sources or adjust to rapid regime shifts. Conventional approaches, relying exclusively on historical price sequences, often neglect the semantic drivers of volatility such as policy uncertainty and market narratives. To address these limitations, we propose the ASTIF (Adaptive Semantic-Temporal Integration for Cryptocurrency Price Forecasting), a hybrid intelligent system that adapts its forecasting strategy in real time through confidence-based meta-learning. The framework integrates three complementary components. A dual-channel Small Language Model using MirrorPrompt extracts semantic market cues alongside numerical trends. A hybrid LSTM Random Forest model captures sequential temporal dependencies. A confidence-aware meta-learner functions as an adaptive inference layer, modulating each predictor's contribution based on its real-time uncertainty. Experimental evaluation on a diverse dataset of AI-focused cryptocurrencies and major technology stocks from 2020 to 2024 shows that ASTIF outperforms leading deep learning and Transformer baselines (e.g., Informer, TFT). The ablation studies further confirm the critical role of the adaptive meta-learning mechanism, which successfully mitigates risk by shifting reliance between semantic and temporal channels during market turbulence. The research contributes a scalable, knowledge-based solution for fusing quantitative and qualitative data in non-stationary environments.
Health prediction is crucial for ensuring reliability, minimizing downtime, and optimizing maintenance in industrial systems. Remaining Useful Life (RUL) prediction is a key component of this process; however, many existing models struggle to capture fine-grained temporal dependencies while dynamically prioritizing critical features across time for robust prognostics. To address these challenges, we propose a novel framework that integrates Temporal Convolutional Networks (TCNs) for localized temporal feature extraction with a modified Temporal Fusion Transformer (TFT) enhanced by Bi-LSTM encoder-decoder. This architecture effectively bridges short- and long-term dependencies while emphasizing salient temporal patterns. Furthermore, the incorporation of a multi-time-window methodology improves adaptability across diverse operating conditions. Extensive evaluations on benchmark datasets demonstrate that the proposed model reduces the average RMSE by up to 5.5%, underscoring its improved predictive accuracy compared to state-of-the-art methods. By closing critical gaps in current approaches, this framework advances the effectiveness of industrial prognostic systems and highlights the potential of advanced time-series transformers for RUL prediction.
Despite their potential to enhance children's learning experiences, AI-enabled AR technologies are predominantly used in ways that position children as consumers rather than creators. We introduce Capybara, an AR-based and AI-powered visual programming environment that empowers children to create, customize, and program 3D characters overlaid onto the physical world. Capybara enables children to create virtual characters and accessories using text-to-3D generative AI models, and to animate these characters through auto-rigging and body tracking. In addition, our system employs vision-based AI models to recognize physical objects, allowing children to program interactive behaviors between virtual characters and their physical surroundings. We demonstrate the expressiveness of Capybara through a set of novel AR experiences. We conducted user studies with 20 children in the United States and Argentina. Our findings suggest that Capybara can empower children to harness AI in authoring personalized and engaging AR experiences that seamlessly bridge the virtual and physical worlds.
The Temporal Fusion Transformer (TFT), proposed by Lim et al. [\textit{International Journal of Forecasting}, 2021], is a state-of-the-art attention-based deep neural network architecture specifically designed for multi-horizon time series forecasting. It has demonstrated significant performance improvements over existing benchmarks. In this work, we propose a Quantum Temporal Fusion Transformer (QTFT), a quantum-enhanced hybrid quantum-classical architecture that extends the capabilities of the classical TFT framework. Our results demonstrate that QTFT is successfully trained on the forecasting datasets and is capable of accurately predicting future values. In particular, our experimental results display that in certain test cases, the model outperforms its classical counterpart in terms of both training and test loss, while in the remaining cases, it achieves comparable performance. A key advantage of our approach lies in its foundation on a variational quantum algorithm, enabling implementation on current noisy intermediate-scale quantum (NISQ) devices without strict requirements on the number of qubits or circuit depth.
Forecasting geopolitical conflict from data sources like the Global Database of Events, Language, and Tone (GDELT) is a critical challenge for national security. The inherent sparsity, burstiness, and overdispersion of such data cause standard deep learning models, including the Temporal Fusion Transformer (TFT), to produce unreliable long-horizon predictions. We introduce STFT-VNNGP, a hybrid architecture that won the 2023 Algorithms for Threat Detection (ATD) competition by overcoming these limitations. Designed to bridge this gap, our model employs a two-stage process: first, a TFT captures complex temporal dynamics to generate multi-quantile forecasts. These quantiles then serve as informed inputs for a Variational Nearest Neighbor Gaussian Process (VNNGP), which performs principled spatiotemporal smoothing and uncertainty quantification. In a case study forecasting conflict dynamics in the Middle East and the U.S., STFT-VNNGP consistently outperforms a standalone TFT, showing a superior ability to predict the timing and magnitude of bursty event periods, particularly at long-range horizons. This work offers a robust framework for generating more reliable and actionable intelligence from challenging event data, with all code and workflows made publicly available to ensure reproducibility.
Combining attention with recurrence has shown to be valuable in sequence modeling, including hydrological predictions. Here, we explore the strength of Temporal Fusion Transformers (TFTs) over Long Short-Term Memory (LSTM) networks in rainfall-runoff modeling. We train ten randomly initialized models, TFT and LSTM, for 531 CAMELS catchments in the US. We repeat the experiment with five subsets of the Caravan dataset, each representing catchments in the US, Australia, Brazil, Great Britain, and Chile. Then, the performance of the models, their variability regarding the catchment attributes, and the difference according to the datasets are assessed. Our findings show that TFT slightly outperforms LSTM, especially in simulating the midsection and peak of hydrographs. Furthermore, we show the ability of TFT to handle longer sequences and why it can be a better candidate for higher or larger catchments. Being an explainable AI technique, TFT identifies the key dynamic and static variables, providing valuable scientific insights. However, both TFT and LSTM exhibit a considerable drop in performance with the Caravan dataset, indicating possible data quality issues. Overall, the study highlights the potential of TFT in improving hydrological modeling and understanding.
Wind direction forecasting plays a crucial role in optimizing wind energy production, but faces significant challenges due to the circular nature of directional data, error accumulation in multi-step forecasting, and complex meteorological interactions. This paper presents a novel model, WaveHiTS, which integrates wavelet transform with Neural Hierarchical Interpolation for Time Series to address these challenges. Our approach decomposes wind direction into U-V components, applies wavelet transform to capture multi-scale frequency patterns, and utilizes a hierarchical structure to model temporal dependencies at multiple scales, effectively mitigating error propagation. Experiments conducted on real-world meteorological data from Inner Mongolia, China demonstrate that WaveHiTS significantly outperforms deep learning models (RNN, LSTM, GRU), transformer-based approaches (TFT, Informer, iTransformer), and hybrid models (EMD-LSTM). The proposed model achieves RMSE values of approximately 19.2{\deg}-19.4{\deg} compared to 56{\deg}-64{\deg} for deep learning recurrent models, maintaining consistent accuracy across all forecasting steps up to 60 minutes ahead. Moreover, WaveHiTS demonstrates superior robustness with vector correlation coefficients (VCC) of 0.985-0.987 and hit rates of 88.5%-90.1%, substantially outperforming baseline models. Ablation studies confirm that each component-wavelet transform, hierarchical structure, and U-V decomposition-contributes meaningfully to overall performance. These improvements in wind direction nowcasting have significant implications for enhancing wind turbine yaw control efficiency and grid integration of wind energy.
Semiconductor devices, especially MOSFETs (Metal-oxide-semiconductor field-effect transistor), are crucial in power electronics, but their reliability is affected by aging processes influenced by cycling and temperature. The primary aging mechanism in discrete semiconductors and power modules is the bond wire lift-off, caused by crack growth due to thermal fatigue. The process is empirically characterized by exponential growth and an abrupt end of life, making long-term aging forecasts challenging. This research presents a comprehensive comparative assessment of different forecasting methods for MOSFET failure forecasting applications. Classical tracking, statistical forecasting and Neural Network (NN) based forecasting models are implemented along with novel Temporal Fusion Transformers (TFTs). A comprehensive comparison is performed assessing their MOSFET ageing forecasting ability for different forecasting horizons. For short-term predictions, all algorithms result in acceptable results, with the best results produced by classical NN forecasting models at the expense of higher computations. For long-term forecasting, only the TFT is able to produce valid outcomes owing to the ability to integrate covariates from the expected future conditions. Additionally, TFT attention points identify key ageing turning points, which indicate new failure modes or accelerated ageing phases.
Transaction fee prediction in Bitcoin's ecosystem represents a crucial challenge affecting both user costs and miner revenue optimization. This study presents a systematic evaluation of six predictive models for forecasting Bitcoin transaction fees across a 24-hour horizon (144 blocks): SARIMAX, Prophet, Time2Vec, Time2Vec with Attention, a Hybrid model combining SARIMAX with Gradient Boosting, and the Temporal Fusion Transformer (TFT). Our approach integrates comprehensive feature engineering spanning mempool metrics, network parameters, and historical fee patterns to capture the multifaceted dynamics of fee behavior. Through rigorous 5-fold cross-validation and independent testing, our analysis reveals that traditional statistical approaches outperform more complex deep learning architectures. The SARIMAX model achieves superior accuracy on the independent test set, while Prophet demonstrates strong performance during cross-validation. Notably, sophisticated deep learning models like Time2Vec and TFT show comparatively lower predictive power despite their architectural complexity. This performance disparity likely stems from the relatively constrained training dataset of 91 days, suggesting that deep learning models may achieve enhanced results with extended historical data. These findings offer significant practical implications for cryptocurrency stakeholders, providing empirically-validated guidance for fee-sensitive decision making while illuminating critical considerations in model selection based on data constraints. The study establishes a foundation for advanced fee prediction while highlighting the current advantages of traditional statistical methods in this domain.
Modeling car-following behavior is essential for traffic simulation, analyzing driving patterns, and understanding complex traffic flows with varying levels of autonomous vehicles. Traditional models like the Safe Distance Model and Intelligent Driver Model (IDM) require precise parameter calibration and often lack generality due to simplified assumptions about driver behavior. While machine learning and deep learning methods capture complex patterns, they require large labeled datasets. Foundation models provide a more efficient alternative. Pre-trained on vast, diverse time series datasets, they can be applied directly to various tasks without the need for extensive re-training. These models generalize well across domains, and with minimal fine-tuning, they can be adapted to specific tasks like car-following behavior prediction. In this paper, we apply Chronos, a state-of-the-art public time series foundation model, to analyze car-following behavior using the Open ACC dataset. Without fine-tuning, Chronos outperforms traditional models like IDM and Exponential smoothing with trend and seasonality (ETS), and achieves similar results to deep learning models such as DeepAR and TFT, with an RMSE of 0.60. After fine-tuning, Chronos reduces the error to an RMSE of 0.53, representing a 33.75% improvement over IDM and a 12-37% reduction compared to machine learning models like ETS and deep learning models including DeepAR, WaveNet, and TFT. This demonstrates the potential of foundation models to significantly advance transportation research, offering a scalable, adaptable, and highly accurate approach to predicting and simulating car-following behaviors.