Abstract:Despite their potential to enhance children's learning experiences, AI-enabled AR technologies are predominantly used in ways that position children as consumers rather than creators. We introduce Capybara, an AR-based and AI-powered visual programming environment that empowers children to create, customize, and program 3D characters overlaid onto the physical world. Capybara enables children to create virtual characters and accessories using text-to-3D generative AI models, and to animate these characters through auto-rigging and body tracking. In addition, our system employs vision-based AI models to recognize physical objects, allowing children to program interactive behaviors between virtual characters and their physical surroundings. We demonstrate the expressiveness of Capybara through a set of novel AR experiences. We conducted user studies with 20 children in the United States and Argentina. Our findings suggest that Capybara can empower children to harness AI in authoring personalized and engaging AR experiences that seamlessly bridge the virtual and physical worlds.
Abstract:Recent advances in large language models (LLMs) have led to remarkable progress across domains, yet their capabilities in the humanities, particularly history, remain underexplored. Historical reasoning poses unique challenges for AI, involving multimodal source interpretation, temporal inference, and cross-linguistic analysis. While general-purpose agents perform well on many existing benchmarks, they lack the domain-specific expertise required to engage with historical materials and questions. To address this gap, we introduce HistBench, a new benchmark of 414 high-quality questions designed to evaluate AI's capacity for historical reasoning and authored by more than 40 expert contributors. The tasks span a wide range of historical problems-from factual retrieval based on primary sources to interpretive analysis of manuscripts and images, to interdisciplinary challenges involving archaeology, linguistics, or cultural history. Furthermore, the benchmark dataset spans 29 ancient and modern languages and covers a wide range of historical periods and world regions. Finding the poor performance of LLMs and other agents on HistBench, we further present HistAgent, a history-specific agent equipped with carefully designed tools for OCR, translation, archival search, and image understanding in History. On HistBench, HistAgent based on GPT-4o achieves an accuracy of 27.54% pass@1 and 36.47% pass@2, significantly outperforming LLMs with online search and generalist agents, including GPT-4o (18.60%), DeepSeek-R1(14.49%) and Open Deep Research-smolagents(20.29% pass@1 and 25.12% pass@2). These results highlight the limitations of existing LLMs and generalist agents and demonstrate the advantages of HistAgent for historical reasoning.
Abstract:In response to the increasing mental health challenges faced by college students, we sought to understand their perspectives on how AI applications, particularly Large Language Models (LLMs), can be leveraged to enhance their mental well-being. Through pilot interviews with ten diverse students, we explored their opinions on the use of LLMs across five fictional scenarios: General Information Inquiry, Initial Screening, Reshaping Patient-Expert Dynamics, Long-term Care, and Follow-up Care. Our findings revealed that students' acceptance of LLMs varied by scenario, with participants highlighting both potential benefits, such as proactive engagement and personalized follow-up care, and concerns, including limitations in training data and emotional support. These insights inform how AI technology should be designed and implemented to effectively support and enhance students' mental well-being, particularly in scenarios where LLMs can complement traditional methods, while maintaining empathy and respecting individual preferences.