Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
Cybergrooming is an evolving threat to youth, necessitating proactive educational interventions. We propose StagePilot, an offline RL-based dialogue agent that simulates the stage-wise progression of grooming behaviors for prevention training. StagePilot selects conversational stages using a composite reward that balances user sentiment and goal proximity, with transitions constrained to adjacent stages for realism and interpretability. We evaluate StagePilot through LLM-based simulations, measuring stage completion, dialogue efficiency, and emotional engagement. Results show that StagePilot generates realistic and coherent conversations aligned with grooming dynamics. Among tested methods, the IQL+AWAC agent achieves the best balance between strategic planning and emotional coherence, reaching the final stage up to 43% more frequently than baselines while maintaining over 70% sentiment alignment.
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
Prior work on fairness in large language models (LLMs) has primarily focused on access-level behaviors such as refusals and safety filtering. However, equitable access does not ensure equitable interaction quality once a response is provided. In this paper, we conduct a controlled fairness audit examining how LLMs differ in tone, uncertainty, and linguistic framing across demographic identities after access is granted. Using a counterfactual prompt design, we evaluate GPT-4 and LLaMA-3.1-70B on career advice tasks while varying identity attributes along age, gender, and nationality. We assess access fairness through refusal analysis and measure interaction quality using automated linguistic metrics, including sentiment, politeness, and hedging. Identity-conditioned differences are evaluated using paired statistical tests. Both models exhibit zero refusal rates across all identities, indicating uniform access. Nevertheless, we observe systematic, model-specific disparities in interaction quality: GPT-4 expresses significantly higher hedging toward younger male users, while LLaMA exhibits broader sentiment variation across identity groups. These results show that fairness disparities can persist at the interaction level even when access is equal, motivating evaluation beyond refusal-based audits.
Topic modeling is a research field finding increasing applications: historically from document retrieving, to sentiment analysis and text summarization. Large Language Models (LLM) are currently a major trend in text processing, but few works study their usefulness for this task. Formal Concept Analysis (FCA) has recently been presented as a candidate for topic modeling, but no real applied case study has been conducted. In this work, we compare LLM and FCA to better understand their strengths and weakneses in the topic modeling field. FCA is evaluated through the CREA pipeline used in past experiments on topic modeling and visualization, whereas GPT-5 is used for the LLM. A strategy based on three prompts is applied with GPT-5 in a zero-shot setup: topic generation from document batches, merging of batch results into final topics, and topic labeling. A first experiment reuses the teaching materials previously used to evaluate CREA, while a second experiment analyzes 40 research articles in information systems to compare the extracted topics with the underling subfields.
Sentiment analysis models exhibit complementary strengths, yet existing approaches lack a unified framework for effective integration. We present SentiFuse, a flexible and model-agnostic framework that integrates heterogeneous sentiment models through a standardization layer and multiple fusion strategies. Our approach supports decision-level fusion, feature-level fusion, and adaptive fusion, enabling systematic combination of diverse models. We conduct experiments on three large-scale social-media datasets: Crowdflower, GoEmotions, and Sentiment140. These experiments show that SentiFuse consistently outperforms individual models and naive ensembles. Feature-level fusion achieves the strongest overall effectiveness, yielding up to 4\% absolute improvement in F1 score over the best individual model and simple averaging, while adaptive fusion enhances robustness on challenging cases such as negation, mixed emotions, and complex sentiment expressions. These results demonstrate that systematically leveraging model complementarity yields more accurate and reliable sentiment analysis across diverse datasets and text types.
Aspect-Based Sentiment Analysis (ABSA) focuses on extracting sentiment at a fine-grained aspect level and has been widely applied across real-world domains. However, existing ABSA research relies on coarse-grained categorical labels (e.g., positive, negative), which limits its ability to capture nuanced affective states. To address this limitation, we adopt a dimensional approach that represents sentiment with continuous valence-arousal (VA) scores, enabling fine-grained analysis at both the aspect and sentiment levels. To this end, we introduce DimABSA, the first multilingual, dimensional ABSA resource annotated with both traditional ABSA elements (aspect terms, aspect categories, and opinion terms) and newly introduced VA scores. This resource contains 76,958 aspect instances across 42,590 sentences, spanning six languages and four domains. We further introduce three subtasks that combine VA scores with different ABSA elements, providing a bridge from traditional ABSA to dimensional ABSA. Given that these subtasks involve both categorical and continuous outputs, we propose a new unified metric, continuous F1 (cF1), which incorporates VA prediction error into standard F1. We provide a comprehensive benchmark using both prompted and fine-tuned large language models across all subtasks. Our results show that DimABSA is a challenging benchmark and provides a foundation for advancing multilingual dimensional ABSA.
Live streaming platforms require real-time monitoring and reaction to social signals, utilizing partial and asynchronous evidence from video, text, and audio. We propose StreamSense, a streaming detector that couples a lightweight streaming encoder with selective routing to a Vision-Language Model (VLM) expert. StreamSense handles most timestamps with the lightweight streaming encoder, escalates hard/ambiguous cases to the VLM, and defers decisions when context is insufficient. The encoder is trained using (i) a cross-modal contrastive term to align visual/audio cues with textual signals, and (ii) an IoU-weighted loss that down-weights poorly overlapping target segments, mitigating label interference across segment boundaries. We evaluate StreamSense on multiple social streaming detection tasks (e.g., sentiment classification and hate content moderation), and the results show that StreamSense achieves higher accuracy than VLM-only streaming while only occasionally invoking the VLM, thereby reducing average latency and compute. Our results indicate that selective escalation and deferral are effective primitives for understanding streaming social tasks. Code is publicly available on GitHub.
Multimodal sentiment analysis, which includes both image and text data, presents several challenges due to the dissimilarities in the modalities of text and image, the ambiguity of sentiment, and the complexities of contextual meaning. In this work, we experiment with finding the sentiments of image and text data, individually and in combination, on two datasets. Part of the approach introduces the novel `Textual-Cues for Enhancing Multimodal Sentiment Analysis' (TEMSA) based on object recognition methods to address the difficulties in multimodal sentiment analysis. Specifically, we extract the names of all objects detected in an image and combine them with associated text; we call this combination of text and image data TEMS. Our results demonstrate that only TEMS improves the results when considering all the object names for the overall sentiment of multimodal data compared to individual analysis. This research contributes to advancing multimodal sentiment analysis and offers insights into the efficacy of TEMSA in combining image and text data for multimodal sentiment analysis.
Can classical consensus models predict the group behavior of large language models (LLMs)? We examine multi-round interactions among LLM agents through the DeGroot framework, where agents exchange text-based messages over diverse communication graphs. To track opinion evolution, we map each message to an opinion score via sentiment analysis. We find that agents typically reach consensus and the disagreement between the agents decays exponentially. However, the limiting opinion departs from DeGroot's network-centrality-weighted forecast. The consensus between LLM agents turns out to be largely insensitive to initial conditions and instead depends strongly on the discussion subject and inherent biases. Nevertheless, transient dynamics align with classical graph theory and the convergence rate of opinions is closely related to the second-largest eigenvalue of the graph's combination matrix. Together, these findings can be useful for LLM-driven social-network simulations and the design of resource-efficient multi-agent LLM applications.