Readmission prediction is the process of forecasting whether a patient is likely to be readmitted to a hospital within a certain time frame.




Hospitals lack automated systems to harness the growing volume of heterogeneous clinical and operational data to effectively forecast critical events. Early identification of patients at risk for deterioration is essential not only for patient care quality monitoring but also for physician care management. However, translating varied data streams into accurate and interpretable risk assessments poses significant challenges due to inconsistent data formats. We develop a multimodal machine learning framework, the Early Warning Index (EWI), to predict the aggregate risk of ICU admission, emergency response team dispatch, and mortality. Key to EWI's design is a human-in-the-loop process: clinicians help determine alert thresholds and interpret model outputs, which are enhanced by explainable outputs using Shapley Additive exPlanations (SHAP) to highlight clinical and operational factors (e.g., scheduled surgeries, ward census) driving each patient's risk. We deploy EWI in a hospital dashboard that stratifies patients into three risk tiers. Using a dataset of 18,633 unique patients at a large U.S. hospital, our approach automatically extracts features from both structured and unstructured electronic health record (EHR) data and achieves C-statistics of 0.796. It is currently used as a triage tool for proactively managing at-risk patients. The proposed approach saves physicians valuable time by automatically sorting patients of varying risk levels, allowing them to concentrate on patient care rather than sifting through complex EHR data. By further pinpointing specific risk drivers, the proposed model provides data-informed adjustments to caregiver scheduling and allocation of critical resources. As a result, clinicians and administrators can avert downstream complications, including costly procedures or high readmission rates and improve overall patient flow.
Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.
Reducing preventable hospital readmissions is a national priority for payers, providers, and policymakers seeking to improve health care and lower costs. The rate of readmission is being used as a benchmark to determine the quality of healthcare provided by the hospitals. In thisproject, we have used machine learning techniques like Logistic Regression, Random Forest and Support Vector Machines to analyze the health claims data and identify demographic and medical factors that play a crucial role in predicting all-cause readmissions. As the health claims data is high dimensional, we have used Principal Component Analysis as a dimension reduction technique and used the results for building regression models. We compared and evaluated these models based on the Area Under Curve (AUC) metric. Random Forest model gave the highest performance followed by Logistic Regression and Support Vector Machine models. These models can be used to identify the crucial factors causing readmissions and help identify patients to focus on to reduce the chances of readmission, ultimately bringing down the cost and increasing the quality of healthcare provided to the patients.
Healthcare systems generate diverse multimodal data, including Electronic Health Records (EHR), clinical notes, and medical images. Effectively leveraging this data for clinical prediction is challenging, particularly as real-world samples often present with varied or incomplete modalities. Existing approaches typically require complete modality data or rely on manual selection strategies, limiting their applicability in real-world clinical settings where data availability varies across patients and institutions. To address these limitations, we propose MoE-Health, a novel Mixture of Experts framework designed for robust multimodal fusion in healthcare prediction. MoE-Health architecture is specifically developed to handle samples with differing modalities and improve performance on critical clinical tasks. By leveraging specialized expert networks and a dynamic gating mechanism, our approach dynamically selects and combines relevant experts based on available data modalities, enabling flexible adaptation to varying data availability scenarios. We evaluate MoE-Health on the MIMIC-IV dataset across three critical clinical prediction tasks: in-hospital mortality prediction, long length of stay, and hospital readmission prediction. Experimental results demonstrate that MoE-Health achieves superior performance compared to existing multimodal fusion methods while maintaining robustness across different modality availability patterns. The framework effectively integrates multimodal information, offering improved predictive performance and robustness in handling heterogeneous and incomplete healthcare data, making it particularly suitable for deployment in diverse healthcare environments with heterogeneous data availability.
Carbapenemase-Producing Enterobacteriace poses a critical concern for infection prevention and control in hospitals. However, predictive modeling of previously highlighted CPE-associated risks such as readmission, mortality, and extended length of stay (LOS) remains underexplored, particularly with modern deep learning approaches. This study introduces an eXplainable AI modeling framework to investigate CPE impact on patient outcomes from Electronic Medical Records data of an Irish hospital. We analyzed an inpatient dataset from an Irish acute hospital, incorporating diagnostic codes, ward transitions, patient demographics, infection-related variables and contact network features. Several Transformer-based architectures were benchmarked alongside traditional machine learning models. Clinical outcomes were predicted, and XAI techniques were applied to interpret model decisions. Our framework successfully demonstrated the utility of Transformer-based models, with TabTransformer consistently outperforming baselines across multiple clinical prediction tasks, especially for CPE acquisition (AUROC and sensitivity). We found infection-related features, including historical hospital exposure, admission context, and network centrality measures, to be highly influential in predicting patient outcomes and CPE acquisition risk. Explainability analyses revealed that features like "Area of Residence", "Admission Ward" and prior admissions are key risk factors. Network variables like "Ward PageRank" also ranked highly, reflecting the potential value of structural exposure information. This study presents a robust and explainable AI framework for analyzing complex EMR data to identify key risk factors and predict CPE-related outcomes. Our findings underscore the superior performance of the Transformer models and highlight the importance of diverse clinical and network features.
Artificial Intelligence has revolutionised critical care for common conditions. Yet, rare conditions in the intensive care unit (ICU), including recognised rare diseases and low-prevalence conditions in the ICU, remain underserved due to data scarcity and intra-condition heterogeneity. To bridge such gaps, we developed KnowRare, a domain adaptation-based deep learning framework for predicting clinical outcomes for rare conditions in the ICU. KnowRare mitigates data scarcity by initially learning condition-agnostic representations from diverse electronic health records through self-supervised pre-training. It addresses intra-condition heterogeneity by selectively adapting knowledge from clinically similar conditions with a developed condition knowledge graph. Evaluated on two ICU datasets across five clinical prediction tasks (90-day mortality, 30-day readmission, ICU mortality, remaining length of stay, and phenotyping), KnowRare consistently outperformed existing state-of-the-art models. Additionally, KnowRare demonstrated superior predictive performance compared to established ICU scoring systems, including APACHE IV and IV-a. Case studies further demonstrated KnowRare's flexibility in adapting its parameters to accommodate dataset-specific and task-specific characteristics, its generalisation to common conditions under limited data scenarios, and its rationality in selecting source conditions. These findings highlight KnowRare's potential as a robust and practical solution for supporting clinical decision-making and improving care for rare conditions in the ICU.
Conventional machine learning models, particularly tree-based approaches, have demonstrated promising performance across various clinical prediction tasks using electronic health record (EHR) data. Despite their strengths, these models struggle with tasks that require deeper contextual understanding, such as predicting 30-day hospital readmission. This can be primarily due to the limited semantic information available in structured EHR data. To address this limitation, we propose a deep multimodal contrastive learning (CL) framework that aligns the latent representations of structured EHR data with unstructured discharge summary notes. It works by pulling together paired EHR and text embeddings while pushing apart unpaired ones. Fine-tuning the pretrained EHR encoder extracted from this framework significantly boosts downstream task performance, e.g., a 4.1% AUROC enhancement over XGBoost for 30-day readmission prediction. Such results demonstrate the effect of integrating domain knowledge from clinical notes into EHR-based pipelines, enabling more accurate and context-aware clinical decision support systems.
The temporal complexity of electronic health record (EHR) data presents significant challenges for predicting clinical outcomes using machine learning. This paper proposes ChronoFormer, an innovative transformer based architecture specifically designed to encode and leverage temporal dependencies in longitudinal patient data. ChronoFormer integrates temporal embeddings, hierarchical attention mechanisms, and domain specific masking techniques. Extensive experiments conducted on three benchmark tasks mortality prediction, readmission prediction, and long term comorbidity onset demonstrate substantial improvements over current state of the art methods. Furthermore, detailed analyses of attention patterns underscore ChronoFormer's capability to capture clinically meaningful long range temporal relationships.
Objective: To evaluate whether preoperative body composition metrics automatically extracted from CT scans can predict postoperative outcomes after colectomy, either alone or combined with clinical variables or existing risk predictors. Main outcomes and measures: The primary outcome was the predictive performance for 1-year all-cause mortality following colectomy. A Cox proportional hazards model with 1-year follow-up was used, and performance was evaluated using the concordance index (C-index) and Integrated Brier Score (IBS). Secondary outcomes included postoperative complications, unplanned readmission, blood transfusion, and severe infection, assessed using AUC and Brier Score from logistic regression. Odds ratios (OR) described associations between individual CT-derived body composition metrics and outcomes. Over 300 features were extracted from preoperative CTs across multiple vertebral levels, including skeletal muscle area, density, fat areas, and inter-tissue metrics. NSQIP scores were available for all surgeries after 2012.




While deep neural networks (DNNs) are widely used for prediction, inference on DNN-estimated subject-specific means for categorical or exponential family outcomes remains underexplored. We address this by proposing a DNN estimator under generalized nonparametric regression models (GNRMs) and developing a rigorous inference framework. Unlike existing approaches that assume independence between prediction errors and inputs to establish the error bound, a condition often violated in GNRMs, we allow for dependence and our theoretical analysis demonstrates the feasibility of drawing inference under GNRMs. To implement inference, we consider an Ensemble Subsampling Method (ESM) that leverages U-statistics and the Hoeffding decomposition to construct reliable confidence intervals for DNN estimates. We show that, under GNRM settings, ESM enables model-free variance estimation and accounts for heterogeneity among individuals in the population. Through simulations under nonparametric logistic, Poisson, and binomial regression models, we demonstrate the effectiveness and efficiency of our method. We further apply the method to the electronic Intensive Care Unit (eICU) dataset, a large-scale collection of anonymized health records from ICU patients, to predict ICU readmission risk and offer patient-centric insights for clinical decision-making.