Abstract:Vision-based tactile sensing has been widely used in perception, reconstruction, and robotic manipulation. However, collecting large-scale tactile data remains costly due to the localized nature of sensor-object interactions and inconsistencies across sensor instances. Existing approaches to scaling tactile data, such as simulation and free-form tactile generation, often suffer from unrealistic output and poor transferability to downstream tasks. To address this, we propose ControlTac, a two-stage controllable framework that generates realistic tactile images conditioned on a single reference tactile image, contact force, and contact position. With those physical priors as control input, ControlTac generates physically plausible and varied tactile images that can be used for effective data augmentation. Through experiments on three downstream tasks, we demonstrate that ControlTac can effectively augment tactile datasets and lead to consistent gains. Our three real-world experiments further validate the practical utility of our approach. Project page: https://dongyuluo.github.io/controltac.
Abstract:Hospital readmission prediction is critical for clinical decision support, aiming to identify patients at risk of returning within 30 days post-discharge. High readmission rates often indicate inadequate treatment or post-discharge care, making effective prediction models essential for optimizing resources and improving patient outcomes. We propose PT, a Transformer-based model that integrates Electronic Health Records (EHR), medical images, and clinical notes to predict 30-day all-cause hospital readmissions. PT extracts features from raw data and uses specialized Transformer blocks tailored to the data's complexity. Enhanced with Random Forest for EHR feature selection and test-time ensemble techniques, PT achieves superior accuracy, scalability, and robustness. It performs well even when temporal information is missing. Our main contributions are: (1)Simplicity: A powerful and efficient baseline model outperforming existing ones in prediction accuracy; (2)Scalability: Flexible handling of various features from different modalities, achieving high performance with just clinical notes or EHR data; (3)Robustness: Strong predictive performance even with missing or unclear temporal data.