While deep neural networks (DNNs) are widely used for prediction, inference on DNN-estimated subject-specific means for categorical or exponential family outcomes remains underexplored. We address this by proposing a DNN estimator under generalized nonparametric regression models (GNRMs) and developing a rigorous inference framework. Unlike existing approaches that assume independence between prediction errors and inputs to establish the error bound, a condition often violated in GNRMs, we allow for dependence and our theoretical analysis demonstrates the feasibility of drawing inference under GNRMs. To implement inference, we consider an Ensemble Subsampling Method (ESM) that leverages U-statistics and the Hoeffding decomposition to construct reliable confidence intervals for DNN estimates. We show that, under GNRM settings, ESM enables model-free variance estimation and accounts for heterogeneity among individuals in the population. Through simulations under nonparametric logistic, Poisson, and binomial regression models, we demonstrate the effectiveness and efficiency of our method. We further apply the method to the electronic Intensive Care Unit (eICU) dataset, a large-scale collection of anonymized health records from ICU patients, to predict ICU readmission risk and offer patient-centric insights for clinical decision-making.