This paper proposes elementary information mechanics as a new model for understanding the mechanical properties of convolutional filtering with rectification, inspired by physical theories of special relativity and quantum mechanics. We consider kernels decomposed into orthogonal even and odd components. Even components cause image content to diffuse isotropically while preserving the center of mass, analogously to rest or potential energy with zero net momentum. Odd kernels cause directional displacement of the center of mass, analogously to kinetic energy with non-zero momentum. The speed of information displacement is linearly related to the ratio of odd vs total kernel energy. Even-Odd properties are analyzed in the spectral domain via the discrete cosine transform (DCT), where the structure of small convolutional filters (e.g. $3 \times 3$ pixels) is dominated by low-frequency bases, specifically the DC $Σ$ and gradient components $\nabla$, which define the fundamental modes of information propagation. To our knowledge, this is the first work demonstrating the link between information processing in generic CNNs and the energy-momentum relation, a cornerstone of modern relativistic physics.
The dynamics of glaciers and ice shelf fronts significantly impact the mass balance of ice sheets and coastal sea levels. To effectively monitor glacier conditions, it is crucial to consistently estimate positional shifts of glacier calving fronts. AMD-HookNet firstly introduces a pure two-branch convolutional neural network (CNN) for glacier segmentation. Yet, the local nature and translational invariance of convolution operations, while beneficial for capturing low-level details, restricts the model ability to maintain long-range dependencies. In this study, we propose AMD-HookNet++, a novel advanced hybrid CNN-Transformer feature enhancement method for segmenting glaciers and delineating calving fronts in synthetic aperture radar images. Our hybrid structure consists of two branches: a Transformer-based context branch to capture long-range dependencies, which provides global contextual information in a larger view, and a CNN-based target branch to preserve local details. To strengthen the representation of the connected hybrid features, we devise an enhanced spatial-channel attention module to foster interactions between the hybrid CNN-Transformer branches through dynamically adjusting the token relationships from both spatial and channel perspectives. Additionally, we develop a pixel-to-pixel contrastive deep supervision to optimize our hybrid model by integrating pixelwise metric learning into glacier segmentation. Through extensive experiments and comprehensive quantitative and qualitative analyses on the challenging glacier segmentation benchmark dataset CaFFe, we show that AMD-HookNet++ sets a new state of the art with an IoU of 78.2 and a HD95 of 1,318 m, while maintaining a competitive MDE of 367 m. More importantly, our hybrid model produces smoother delineations of calving fronts, resolving the issue of jagged edges typically seen in pure Transformer-based approaches.
Underwater images are severely degraded by wavelength-dependent light absorption and scattering, resulting in color distortion, low contrast, and loss of fine details that hinder vision-based underwater applications. To address these challenges, we propose AquaDiff, a diffusion-based underwater image enhancement framework designed to correct chromatic distortions while preserving structural and perceptual fidelity. AquaDiff integrates a chromatic prior-guided color compensation strategy with a conditional diffusion process, where cross-attention dynamically fuses degraded inputs and noisy latent states at each denoising step. An enhanced denoising backbone with residual dense blocks and multi-resolution attention captures both global color context and local details. Furthermore, a novel cross-domain consistency loss jointly enforces pixel-level accuracy, perceptual similarity, structural integrity, and frequency-domain fidelity. Extensive experiments on multiple challenging underwater benchmarks demonstrate that AquaDiff provides good results as compared to the state-of-the-art traditional, CNN-, GAN-, and diffusion-based methods, achieving superior color correction and competitive overall image quality across diverse underwater conditions.
Building extraction from remote sensing images is a challenging task due to the complex structure variations of the buildings. Existing methods employ convolutional or self-attention blocks to capture the multi-scale features in the segmentation models, while the inherent gap of the feature pyramids and insufficient global-local feature integration leads to inaccurate, ambiguous extraction results. To address this issue, in this paper, we present an Uncertainty-Aggregated Global-Local Fusion Network (UAGLNet), which is capable to exploit high-quality global-local visual semantics under the guidance of uncertainty modeling. Specifically, we propose a novel cooperative encoder, which adopts hybrid CNN and transformer layers at different stages to capture the local and global visual semantics, respectively. An intermediate cooperative interaction block (CIB) is designed to narrow the gap between the local and global features when the network becomes deeper. Afterwards, we propose a Global-Local Fusion (GLF) module to complementarily fuse the global and local representations. Moreover, to mitigate the segmentation ambiguity in uncertain regions, we propose an Uncertainty-Aggregated Decoder (UAD) to explicitly estimate the pixel-wise uncertainty to enhance the segmentation accuracy. Extensive experiments demonstrate that our method achieves superior performance to other state-of-the-art methods. Our code is available at https://github.com/Dstate/UAGLNet
Accurately quantifying vitiligo extent in routine clinical photographs is crucial for longitudinal monitoring of treatment response. We propose a trustworthy, frequency-aware segmentation framework built on three synergistic pillars: (1) a data-efficient training strategy combining domain-adaptive pre-training on the ISIC 2019 dataset with an ROI-constrained dual-task loss to suppress background noise; (2) an architectural refinement via a ConvNeXt V2-based encoder enhanced with a novel High-Frequency Spectral Gating (HFSG) module and stem-skip connections to capture subtle textures; and (3) a clinical trust mechanism employing K-fold ensemble and Test-Time Augmentation (TTA) to generate pixel-wise uncertainty maps. Extensive validation on an expert-annotated clinical cohort demonstrates superior performance, achieving a Dice score of 85.05% and significantly reducing boundary error (95% Hausdorff Distance improved from 44.79 px to 29.95 px), consistently outperforming strong CNN (ResNet-50 and UNet++) and Transformer (MiT-B5) baselines. Notably, our framework demonstrates high reliability with zero catastrophic failures and provides interpretable entropy maps to identify ambiguous regions for clinician review. Our approach suggests that the proposed framework establishes a robust and reliable standard for automated vitiligo assessment.
The efficacy of Artificial Intelligence (AI) in micro/nano manufacturing is fundamentally constrained by the scarcity of high-quality and physically grounded training data for defect inspection. Lithography defect data from semiconductor industry are rarely accessible for research use, resulting in a shortage of publicly available datasets. To address this bottleneck in lithography, this study proposes a novel methodology for generating large-scale, physically valid defect datasets with pixel-level annotations. The framework begins with the ab initio synthesis of defect layouts using controllable, physics-constrained mathematical morphology operations (erosion and dilation) applied to the original design-level layout. These synthesized layouts, together with their defect-free counterparts, are fabricated into physical samples via high-fidelity digital micromirror device (DMD)-based lithography. Optical micrographs of the synthesized defect samples and their defect-free references are then compared to create consistent defect delineation annotations. Using this methodology, we constructed a comprehensive dataset of 3,530 Optical micrographs containing 13,365 annotated defect instances including four classes: bridge, burr, pinch, and contamination. Each defect instance is annotated with a pixel-accurate segmentation mask, preserving full contour and geometry. The segmentation-based Mask R-CNN achieves AP@0.5 of 0.980, 0.965, and 0.971, compared with 0.740, 0.719, and 0.717 for Faster R-CNN on bridge, burr, and pinch classes, representing a mean AP@0.5 improvement of approximately 34%. For the contamination class, Mask R-CNN achieves an AP@0.5 roughly 42% higher than Faster R-CNN. These consistent gains demonstrate that our proposed methodology to generate defect datasets with pixel-level annotations is feasible for robust AI-based Measurement/Inspection (MI) in semiconductor fabrication.
Accurate three-dimensional delineation of liver tumors on contrast-enhanced CT is a prerequisite for treatment planning, navigation and response assessment, yet manual contouring is slow, observer-dependent and difficult to standardise across centres. Automatic segmentation is complicated by low lesion-parenchyma contrast, blurred or incomplete boundaries, heterogeneous enhancement patterns, and confounding structures such as vessels and adjacent organs. We propose a hybrid framework that couples an attention-enhanced cascaded U-Net with handcrafted radiomics and voxel-wise 3D CNN refinement for joint liver and liver-tumor segmentation. First, a 2.5D two-stage network with a densely connected encoder, sub-pixel convolution decoders and multi-scale attention gates produces initial liver and tumor probability maps from short stacks of axial slices. Inter-slice temporal consistency is then enforced by a simple three-slice refinement rule along the cranio-caudal direction, which restores thin and tiny lesions while suppressing isolated noise. Next, 728 radiomic descriptors spanning intensity, texture, shape, boundary and wavelet feature groups are extracted from candidate lesions and reduced to 20 stable, highly informative features via multi-strategy feature selection; a random forest classifier uses these features to reject false-positive regions. Finally, a compact 3D patch-based CNN derived from AlexNet operates in a narrow band around the tumor boundary to perform voxel-level relabelling and contour smoothing.
A novel deep hybrid Residual-SwinCA-Net segmentation framework is proposed in the study for addressing such challenges by extracting locally correlated and robust features, incorporating residual CNN modules. Furthermore, for learning global dependencies, Swin Transformer blocks are customized using internal residual pathways, which reinforce gradient stability, refine local patterns, and facilitate global feature fusion. Formerly, for enhancing tissue continuity, ultrasound noise suppressions, and accentuating fine structural transitions Laplacian-of-Gaussian regional operator is applied, and for maintaining the morphological integrity of malignant lesion contours, a boundary-oriented operator has been incorporated. Subsequently, a contraction strategy was applied stage-wise by progressively reducing features-map progressively for capturing scale invariance and enhancing the robustness of structural variability. In addition, each decoder level prior augmentation integrates a new Multi-Scale Channel Attention and Squeezing (MSCAS) module. The MSCAS selectively emphasizes encoder salient maps, retains discriminative global context, and complementary local structures with minimal computational cost while suppressing redundant activations. Finally, the Pixel-Attention module encodes class-relevant spatial cues by adaptively weighing malignant lesion pixels while suppressing background interference. The Residual-SwinCA-Net and existing CNNs/ViTs techniques have been implemented on the publicly available BUSI dataset. The proposed Residual-SwinCA-Net framework outperformed and achieved 99.29% mean accuracy, 98.74% IoU, and 0.9041 Dice for breast lesion segmentation. The proposed Residual-SwinCA-Net framework improves the BUSI lesion diagnostic performance and strengthens timely clinical decision-making.
This work proposes a hybrid deep learning approach, namely Residual and Spatial Learning based Channel Augmented Integrated CNN-Transformer architecture, that leverages the strengths of CNN and Transformer towards enhanced MPox detection. The proposed RS-CA-HSICT framework is composed of an HSICT block, a residual CNN module, a spatial CNN block, and a CA, which enhances the diverse feature space, detailed lesion information, and long-range dependencies. The new HSICT module first integrates an abstract representation of the stem CNN and customized ICT blocks for efficient multihead attention and structured CNN layers with homogeneous (H) and structural (S) operations. The customized ICT blocks learn global contextual interactions and local texture extraction. Additionally, H and S layers learn spatial homogeneity and fine structural details by reducing noise and modeling complex morphological variations. Moreover, inverse residual learning enhances vanishing gradient, and stage-wise resolution reduction ensures scale invariance. Furthermore, the RS-CA-HSICT framework augments the learned HSICT channels with the TL-driven Residual and Spatial CNN maps for enhanced multiscale feature space capturing global and localized structural cues, subtle texture, and contrast variations. These channels, preceding augmentation, are refined through the Channel-Fusion-and-Attention block, which preserves discriminative channels while suppressing redundant ones, thereby enabling efficient computation. Finally, the spatial attention mechanism refines pixel selection to detect subtle patterns and intra-class contrast variations in Mpox. Experimental results on both the Kaggle benchmark and a diverse MPox dataset reported classification accuracy as high as 98.30% and an F1-score of 98.13%, which outperforms the existing CNNs and ViTs.
Bark beetle infestations represent a serious challenge for maintaining the health of coniferous forests. This paper proposes a few-shot learning approach leveraging contrastive learning to detect bark beetle infestations using satellite PRISMA hyperspectral data. The methodology is based on a contrastive learning framework to pre-train a one-dimensional CNN encoder, enabling the extraction of robust feature representations from hyperspectral data. These extracted features are subsequently utilized as input to support vector regression estimators, one for each class, trained on few labeled samples to estimate the proportions of healthy, attacked by bark beetle, and dead trees for each pixel. Experiments on the area of study in the Dolomites show that our method outperforms the use of original PRISMA spectral bands and of Sentinel-2 data. The results indicate that PRISMA hyperspectral data combined with few-shot learning offers significant advantages for forest health monitoring.