Abstract:Plant disease diagnosis is essential to farmers' management choices because plant diseases frequently lower crop yield and product quality. For harvests to flourish and agricultural productivity to boost, grape leaf disease detection is important. The plant disease dataset contains grape leaf diseases total of 9,032 images of four classes, among them three classes are leaf diseases, and the other one is healthy leaves. After rigorous pre-processing dataset was split (70% training, 20% validation, 10% testing), and two pre-trained models were deployed: InceptionV3 and Xception. Xception shows a promising result of 96.23% accuracy, which is remarkable than InceptionV3. Adversarial Training is used for robustness, along with more transparency. Grad-CAM is integrated to confirm the leaf disease. Finally deployed a web application using Streamlit with a heatmap visualization and prediction with confidence level for robust grape leaf disease classification.




Abstract:Tea is among the most widely consumed drinks globally. Tea production is a key industry for many countries. One of the main challenges in tea harvesting is tea leaf diseases. If the spread of tea leaf diseases is not stopped in time, it can lead to massive economic losses for farmers. Therefore, it is crucial to identify tea leaf diseases as soon as possible. Manually identifying tea leaf disease is an ineffective and time-consuming method, without any guarantee of success. Automating this process will improve both the efficiency and the success rate of identifying tea leaf diseases. The purpose of this study is to create an automated system that can classify different kinds of tea leaf diseases, allowing farmers to take action to minimize the damage. A novel dataset was developed specifically for this study. The dataset contains 5278 images across seven classes. The dataset was pre-processed prior to training the model. We deployed three pretrained models: DenseNet, Inception, and EfficientNet. EfficientNet was used only in the ensemble model. We utilized two different attention modules to improve model performance. The ensemble model achieved the highest accuracy of 85.68%. Explainable AI was introduced for better model interpretability.