Routing problems such as Hamiltonian Path Problem (HPP), seeks a path to visit all the vertices in a graph while minimizing the path cost. This paper studies a variant, HPP with Probabilistic Terminals (HPP-PT), where each vertex has a probability representing the likelihood that the robot's path terminates there, and the objective is to minimize the expected path cost. HPP-PT arises in target object search, where a mobile robot must visit all candidate locations to find an object, and prior knowledge of the object's location is expressed as vertex probabilities. While routing problems have been studied for decades, few of them consider uncertainty as required in this work. The challenge lies not only in optimally ordering the vertices, as in standard HPP, but also in handling history dependency: the expected path cost depends on the order in which vertices were previously visited. This makes many existing methods inefficient or inapplicable. To address the challenge, we propose a search-based approach RPT* with solution optimality guarantees, which leverages dynamic programming in a new state space to bypass the history dependency and novel heuristics to speed up the computation. Building on RPT*, we design a Hierarchical Autonomous Target Search (HATS) system that combines RPT* with either Bayesian filtering for lifelong target search with noisy sensors, or autonomous exploration to find targets in unknown environments. Experiments in both simulation and real robot show that our approach can naturally balance between exploitation and exploration, thereby finding targets more quickly on average than baseline methods.
Pickup points are widely recognized as a sustainable alternative to home delivery, as consolidating orders at pickup locations can shorten delivery routes and improve first-attempt success rates. However, these benefits may be negated when customers drive to pick up their orders. This study proposes a Differentiated Pickup Point Offering (DPO) policy that aims to jointly reduce emissions from delivery truck routes and customer travel. Under DPO, each arriving customer is offered a single recommended pickup point, rather than an unrestricted choice among all locations, while retaining the option of home delivery. We study this problem in a dynamic and stochastic setting, where the pickup point offered to each customer depends on previously realized customer locations and delivery choices. To design effective DPO policies, we adopt a reinforcement learning-based approach that accounts for spatial relationships between customers and pickup points and their implications for future route consolidation. Computational experiments show that differentiated pickup point offerings can substantially reduce total carbon emissions. The proposed policies reduce total emissions by up to 9% relative to home-only delivery and by 2% on average compared with alternative policies, including unrestricted pickup point choice and nearest pickup point assignment. Differentiated offerings are particularly effective in dense urban settings with many pickup points and short inter-location distances. Moreover, explicitly accounting for the dynamic nature of customer arrivals and choices is especially important when customers are less inclined to choose pickup point delivery over home delivery.
Expected-time mobile search (ETS) is a fundamental robotics task where a mobile sensor navigates an environment to minimize the expected time required to locate a hidden object. Global route optimization for ETS in static 2D continuous environments remains largely underexplored due to the intractability of objective evaluation, stemming from the continuous nature of the environment and the interplay of motion and visibility constraints. Prior work has addressed this through partial discretization, leading to discrete-sensing formulations tackled via utility-greedy heuristics. Others have taken an indirect approach by heuristically approximating the objective using minimum latency problems on fixed graphs, enabling global route optimization via efficient metaheuristics. This paper builds on and significantly extends the latter by introducing Milaps (Minimum latency problems), a model-based solution framework for ETS. Milaps integrates novel auxiliary objectives and adapts a recent anytime metaheuristic for the traveling deliveryman problem, chosen for its strong performance under tight runtime constraints. Evaluations on a novel large-scale dataset demonstrate superior trade-offs between solution quality and runtime compared to state-of-the-art baselines. The best-performing strategy rapidly generates a preliminary solution, assigns static weights to sensing configurations, and optimizes global costs metaheuristically. Additionally, a qualitative study highlights the framework's flexibility across diverse scenarios.
Drones have recently emerged as a faster, safer, and cost-efficient way for last-mile deliveries of parcels, particularly for urgent medical deliveries highlighted during the pandemic. This paper addresses a new challenge of multi-parcel delivery with a swarm of energy-aware drones, accounting for time-sensitive customer requirements. Each drone plans an optimal multi-parcel route within its battery-restricted flight range to minimize delivery delays and reduce energy consumption. The problem is tackled by decomposing it into three sub-problems: (1) optimizing depot locations and service areas using K-means clustering; (2) determining the optimal flight range for drones through reinforcement learning; and (3) planning and selecting multi-parcel delivery routes via a new optimized plan selection approach. To integrate these solutions and enhance long-term efficiency, we propose a novel algorithm leveraging actor-critic-based multi-agent deep reinforcement learning. Extensive experimentation using realistic delivery datasets demonstrate an exceptional performance of the proposed algorithm. We provide new insights into economic efficiency (minimize energy consumption), rapid operations (reduce delivery delays and overall execution time), and strategic guidance on depot deployment for practical logistics applications.
Topological localization is a fundamental problem in mobile robotics, since robots must be able to determine their position in order to accomplish tasks. Visual localization and place recognition are challenging due to perceptual ambiguity, sensor noise, and illumination variations. This work addresses topological localization in an office environment using only images acquired with a perspective color camera mounted on a robot platform, without relying on temporal continuity of image sequences. We evaluate state-of-the-art visual descriptors, including Color Histograms, SIFT, ASIFT, RGB-SIFT, and Bag-of-Visual-Words approaches inspired by text retrieval. Our contributions include a systematic, quantitative comparison of these features, distance measures, and classifiers. Performance was analyzed using standard evaluation metrics and visualizations, extending previous experiments. Results demonstrate the advantages of proper configurations of appearance descriptors, similarity measures, and classifiers. The quality of these configurations was further validated in the Robot Vision task of the ImageCLEF evaluation campaign, where the system identified the most likely location of novel image sequences. Future work will explore hierarchical models, ranking methods, and feature combinations to build more robust localization systems, reducing training and runtime while avoiding the curse of dimensionality. Ultimately, this aims toward integrated, real-time localization across varied illumination and longer routes.
We propose a scalable deep learning framework for parametrized sequential decision-making (ParaSDM), where multiple agents jointly optimize discrete action policies and shared continuous parameters. A key subclass of this setting arises in Facility-Location and Path Optimization (FLPO), where multi-agent systems must simultaneously determine optimal routes and facility locations, aiming to minimize the cumulative transportation cost within the network. FLPO problems are NP-hard due to their mixed discrete-continuous structure and highly non-convex objective. To address this, we integrate the Maximum Entropy Principle (MEP) with a neural policy model called the Shortest Path Network (SPN)-a permutation-invariant encoder-decoder that approximates the MEP solution while enabling efficient gradient-based optimization over shared parameters. The SPN achieves up to 100$\times$ speedup in policy inference and gradient computation compared to MEP baselines, with an average optimality gap of approximately 6% across a wide range of problem sizes. Our FLPO approach yields over 10$\times$ lower cost than metaheuristic baselines while running significantly faster, and matches Gurobi's optimal cost with annealing at a 1500$\times$ speedup-establishing a new state of the art for ParaSDM problems. These results highlight the power of structured deep models for solving large-scale mixed-integer optimization tasks.
Combinatorial optimization problems (COPs) with discrete variables and finite search space are critical across numerous fields, and solving them in metaheuristic algorithms is popular. However, addressing a specific COP typically requires developing a tailored and handcrafted algorithm. Even minor adjustments, such as constraint changes, may necessitate algorithm redevelopment. Therefore, establishing a framework for formulating diverse COPs into a unified paradigm and designing reusable metaheuristic algorithms is valuable. A COP can be typically viewed as the process of giving resources to perform specific tasks, subjecting to given constraints. Motivated by this, a resource-centered modeling and solving framework (REMS) is introduced for the first time. We first extract and define resources and tasks from a COP. Subsequently, given predetermined resources, the solution structure is unified as assigning tasks to resources, from which variables, objectives, and constraints can be derived and a problem model is constructed. To solve the modeled COPs, several fundamental operators are designed based on the unified solution structure, including the initial solution, neighborhood structure, destruction and repair, crossover, and ranking. These operators enable the development of various metaheuristic algorithms. Specially, 4 single-point-based algorithms and 1 population-based algorithm are configured herein. Experiments on 10 COPs, covering routing, location, loading, assignment, scheduling, and graph coloring problems, show that REMS can model these COPs within the unified paradigm and effectively solve them with the designed metaheuristic algorithms. Furthermore, REMS is more competitive than GUROBI and SCIP in tackling large-scale instances and complex COPs, and outperforms OR-TOOLS on several challenging COPs.
Few activities are as crucial in urban environments as waste management. Mismanagement of waste can cause significant economic, social, and environmental damage. However, waste management is often a complex system to manage and therefore where computational decision-support tools can play a pivotal role in assisting managers to make faster and better decisions. In this sense, this article proposes, on the one hand, a unified optimization model to address two common waste management system optimization problem: the determination of the capacity of waste bins in the collection network and the design and scheduling of collection routes. The integration of these two problems is not usual in the literature since each of them separately is already a major computational challenge. On the other hand, two improved exact formulations based on mathematical programming and a genetic algorithm (GA) are provided to solve this proposed unified optimization model. It should be noted that the GA considers a mixed chromosome representation of the solutions combining binary and integer alleles, in order to solve realistic instances of this complex problem. Also, different genetic operators have been tested to study which combination of them obtained better results in execution times on the order of that of the exact solvers. The obtained results show that the proposed GA is able to match the results of exact solvers on small instances and, in addition, can obtain feasible solutions on large instances, where exact formulations are not applicable, in reasonable computation times.
This paper examines the generalisation of the Pickup and Delivery Problem that allows mid-route load exchanges among vehicles and obeys strict time-windows at all locations. We propose a novel Logic-Based Benders Decomposition (LBBD) that improves optimality gaps for all benchmarks in the literature and scales up to handle larger ones. To tackle even larger instances, we introduce a refined Large Neighborhood Search (LNS) algorithm that improves the adaptability of LNS beyond case-specific configurations appearing in related literature. To bridge the gap in benchmark availability, we develop an instance generator that allows for extensive experimentation. For moderate datasets (25 and 50 requests), we evaluate the performance of both LBBD and LNS, the former being able to close the gap and the latter capable of providing near-optimal solutions. For larger instances (75 and 100 requests), we recreate indicative state-of-the-art metaheuristics to highlight the improvements introduced by our LNS refinements, while establishing its scalability.




While Artificial intelligence (AI), including Generative AI, are effective at generating high-quality traffic data and optimization solutions in intelligent transportation systems (ITSs), these techniques often demand significant training time and computational resources, especially in large-scale and complex scenarios. To address this, we introduce a novel and efficient algorithm for solving the maximum weighted independent set (MWIS) problem, which can be used to model many ITSs applications, such as traffic signal control and vehicle routing. Given the NP-hard nature of the MWIS problem, our proposed algorithm, DynLS, incorporates three key innovations to solve it effectively. First, it uses a scores-based adaptive vertex perturbation (SAVP) technique to accelerate convergence, particularly in sparse graphs. Second, it includes a region location mechanism (RLM) to help escape local optima by dynamically adjusting the search space. Finally, it employs a novel variable neighborhood descent strategy, ComLS, which combines vertex exchange strategies with a reward mechanism to guide the search toward high-quality solutions. Our experimental results demonstrate DynLS's superior performance, consistently delivering high-quality solutions within 1000 seconds. DynLS outperformed five leading algorithms across 360 test instances, achieving the best solution for 350 instances and surpassing the second-best algorithm, Cyclic-Fast, by 177 instances. Moreover, DynLS matched Cyclic-Fast's convergence speed, highlighting its efficiency and practicality. This research represents a significant advancement in heuristic algorithms for the MWIS problem, offering a promising approach to aid AI techniques in optimizing intelligent transportation systems.