Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
Structured pruning is essential for efficient deployment of Large Language Models (LLMs). The varying sensitivity of LLM sub-blocks to pruning necessitates the identification of optimal non-uniformly pruned models. Existing methods evaluate the importance of layers, attention heads, or weight channels in isolation. Such localized focus ignores the complex global structural dependencies that exist across the model. Training-aware structured pruning addresses global dependencies, but its computational cost can be just as expensive as post-pruning training. To alleviate the computational burden of training-aware pruning and capture global structural dependencies, we propose TraceNAS, a training-free Neural Architecture Search (NAS) framework that jointly explores structured pruning of LLM depth and width. TraceNAS identifies pruned models that maintain a high degree of loss landscape alignment with the pretrained model using a scale-invariant zero-shot proxy, effectively selecting models that exhibit maximal performance potential during post-pruning training. TraceNAS is highly efficient, enabling high-fidelity discovery of pruned models on a single GPU in 8.5 hours, yielding a 10$\times$ reduction in GPU-hours compared to training-aware methods. Evaluations on the Llama and Qwen families demonstrate that TraceNAS is competitive with training-aware baselines across commonsense and reasoning benchmarks.
Regular sound correspondences constitute the principal evidence in historical language comparison. Despite the heuristic focus on regularity, it is often more an intuitive judgement than a quantified evaluation, and irregularity is more common than expected from the Neogrammarian model. Given the recent progress of computational methods in historical linguistics and the increased availability of standardized lexical data, we are now able to improve our workflows and provide such a quantitative evaluation. Here, we present the balanced average recurrence of correspondence patterns as a new measure of regularity. We also present a new computational method that uses this measure to identify cognate sets that lack regularity with respect to their correspondence patterns. We validate the method through two experiments, using simulated and real data. In the experiments, we employ leave-one-out validation to measure the regularity of cognate sets in which one word form has been replaced by an irregular one, checking how well our method identifies the forms causing the irregularity. Our method achieves an overall accuracy of 85\% with the datasets based on real data. We also show the benefits of working with subsamples of large datasets and how increasing irregularity in the data influences our results. Reflecting on the broader potential of our new regularity measure and the irregular cognate identification method based on it, we conclude that they could play an important role in improving the quality of existing and future datasets in computer-assisted language comparison.
Recent works on language identification and generation have established tight statistical rates at which these tasks can be achieved. These works typically operate under a strong realizability assumption: that the input data is drawn from an unknown distribution necessarily supported on some language in a given collection. In this work, we relax this assumption of realizability entirely, and impose no restrictions on the distribution of the input data. We propose objectives to study both language identification and generation in this more general "agnostic" setup. Across both problems, we obtain novel interesting characterizations and nearly tight rates.
Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
Both fine-grained discriminative details and global semantic features can contribute to solving person re-identification challenges, such as occlusion and pose variations. Vision foundation models (\textit{e.g.}, DINO) excel at mining local textures, and vision-language models (\textit{e.g.}, CLIP) capture strong global semantic difference. Existing methods predominantly rely on a single paradigm, neglecting the potential benefits of their integration. In this paper, we analyze the complementary roles of these two architectures and propose a framework to synergize their strengths by a \textbf{D}ual-\textbf{R}egularized Bidirectional \textbf{Transformer} (\textbf{DRFormer}). The dual-regularization mechanism ensures diverse feature extraction and achieves a better balance in the contributions of the two models. Extensive experiments on five benchmarks show that our method effectively harmonizes local and global representations, achieving competitive performance against state-of-the-art methods.
Safe UAV emergency landing requires more than just identifying flat terrain; it demands understanding complex semantic risks (e.g., crowds, temporary structures) invisible to traditional geometric sensors. In this paper, we propose a novel framework leveraging Remote Sensing (RS) imagery and Multimodal Large Language Models (MLLMs) for global context-aware landing site assessment. Unlike local geometric methods, our approach employs a coarse-to-fine pipeline: first, a lightweight semantic segmentation module efficiently pre-screens candidate areas; second, a vision-language reasoning agent fuses visual features with Point-of-Interest (POI) data to detect subtle hazards. To validate this approach, we construct and release the Emergency Landing Site Selection (ELSS) benchmark. Experiments demonstrate that our framework significantly outperforms geometric baselines in risk identification accuracy. Furthermore, qualitative results confirm its ability to generate human-like, interpretable justifications, enhancing trust in automated decision-making. The benchmark dataset is publicly accessible at https://anonymous.4open.science/r/ELSS-dataset-43D7.
Understanding where drivers direct their visual attention during driving, as characterized by gaze behavior, is critical for developing next-generation advanced driver-assistance systems and improving road safety. This paper tackles this challenge as a semantic identification task from the road scenes captured by a vehicle's front-view camera. Specifically, the collocation of gaze points with object semantics is investigated using three distinct vision-based approaches: direct object detection (YOLOv13), segmentation-assisted classification (SAM2 paired with EfficientNetV2 versus YOLOv13), and query-based Vision-Language Models, VLMs (Qwen2.5-VL-7b versus Qwen2.5-VL-32b). The results demonstrate that the direct object detection (YOLOv13) and Qwen2.5-VL-32b significantly outperform other approaches, achieving Macro F1-Scores over 0.84. The large VLM (Qwen2.5-VL-32b), in particular, exhibited superior robustness and performance for identifying small, safety-critical objects such as traffic lights, especially in adverse nighttime conditions. Conversely, the segmentation-assisted paradigm suffers from a "part-versus-whole" semantic gap that led to large failure in recall. The results reveal a fundamental trade-off between the real-time efficiency of traditional detectors and the richer contextual understanding and robustness offered by large VLMs. These findings provide critical insights and practical guidance for the design of future human-aware intelligent driver monitoring systems.
Traditional object detection systems are typically constrained to predefined categories, limiting their applicability in dynamic environments. In contrast, open-vocabulary object detection (OVD) enables the identification of objects from novel classes not present in the training set. Recent advances in visual-language modeling have led to significant progress of OVD. However, prior works face challenges in either adapting the single-scale image backbone from CLIP to the detection framework or ensuring robust visual-language alignment. We propose Visual-Language Detection (VLDet), a novel framework that revamps feature pyramid for fine-grained visual-language alignment, leading to improved OVD performance. With the VL-PUB module, VLDet effectively exploits the visual-language knowledge from CLIP and adapts the backbone for object detection through feature pyramid. In addition, we introduce the SigRPN block, which incorporates a sigmoid-based anchor-text contrastive alignment loss to improve detection of novel categories. Through extensive experiments, our approach achieves 58.7 AP for novel classes on COCO2017 and 24.8 AP on LVIS, surpassing all state-of-the-art methods and achieving significant improvements of 27.6% and 6.9%, respectively. Furthermore, VLDet also demonstrates superior zero-shot performance on closed-set object detection.
More than 80% of the 1.6 billion English speakers do not use Standard American English (SAE) and experience higher failure rates and stereotyped responses when interacting with LLMs as a result. Yet multi-dialectal performance remains underexplored. We introduce $\textbf{MDial}$, the first large-scale framework for generating multi-dialectal conversational data encompassing the three pillars of written dialect -- lexical (vocabulary), orthographic (spelling), and morphosyntactic (grammar) features -- for nine English dialects. Partnering with native linguists, we design an annotated and scalable rule-based LLM transformation to ensure precision. Our approach challenges the assumption that models should mirror users' morphosyntactic features, showing that up to 90% of the grammatical features of a dialect should not be reproduced by models. Independent evaluations confirm data quality, with annotators preferring MDial outputs over prior methods in 98% of pairwise comparisons for dialect naturalness. Using this pipeline, we construct the dialect-parallel $\textbf{MDialBench}$mark with 50k+ dialogs, resulting in 97k+ QA pairs, and evaluate 17 LLMs on dialect identification and response generation tasks. Even frontier models achieve under 70% accuracy, fail to reach 50% for Canadian English, and systematically misclassify non-SAE dialects as American or British. As dialect identification underpins natural language understanding, these errors risk cascading failures into downstream tasks.