Topic:Image Manipulation Detection
What is Image Manipulation Detection? Image manipulation detection is the process of identifying and detecting manipulated or fake images.
Papers and Code
May 09, 2025
Abstract:Robotic manipulation in 3D requires learning an $N$ degree-of-freedom joint space trajectory of a robot manipulator. Robots must possess semantic and visual perception abilities to transform real-world mappings of their workspace into the low-level control necessary for object manipulation. Recent work has demonstrated the capabilities of fine-tuning large Vision-Language Models (VLMs) to learn the mapping between RGB images, language instructions, and joint space control. These models typically take as input RGB images of the workspace and language instructions, and are trained on large datasets of teleoperated robot demonstrations. In this work, we explore methods to improve the scene context awareness of a popular recent Vision-Language-Action model by integrating chain-of-thought reasoning, depth perception, and task-oriented region of interest detection. Our experiments in the LIBERO simulation environment show that our proposed model, 3D-CAVLA, improves the success rate across various LIBERO task suites, achieving an average success rate of 98.1$\%$. We also evaluate the zero-shot capabilities of our method, demonstrating that 3D scene awareness leads to robust learning and adaptation for completely unseen tasks. 3D-CAVLA achieves an absolute improvement of 8.8$\%$ on unseen tasks. We will open-source our code and the unseen tasks dataset to promote community-driven research here: https://3d-cavla.github.io
* Accepted at the 1st Workshop on 3D LLM/VLA, CVPR 2025
Via

Apr 25, 2025
Abstract:Recent advancements in image manipulation have achieved unprecedented progress in generating photorealistic content, but also simultaneously eliminating barriers to arbitrary manipulation and editing, raising concerns about multimedia authenticity and cybersecurity. However, existing Image Manipulation Detection and Localization (IMDL) methodologies predominantly focus on splicing or copy-move forgeries, lacking dedicated benchmarks for inpainting-based manipulations. To bridge this gap, we present COCOInpaint, a comprehensive benchmark specifically designed for inpainting detection, with three key contributions: 1) High-quality inpainting samples generated by six state-of-the-art inpainting models, 2) Diverse generation scenarios enabled by four mask generation strategies with optional text guidance, and 3) Large-scale coverage with 258,266 inpainted images with rich semantic diversity. Our benchmark is constructed to emphasize intrinsic inconsistencies between inpainted and authentic regions, rather than superficial semantic artifacts such as object shapes. We establish a rigorous evaluation protocol using three standard metrics to assess existing IMDL approaches. The dataset will be made publicly available to facilitate future research in this area.
* 10 pages, 3 figures
Via

Apr 30, 2025
Abstract:Visual text is a crucial component in both document and scene images, conveying rich semantic information and attracting significant attention in the computer vision community. Beyond traditional tasks such as text detection and recognition, visual text processing has witnessed rapid advancements driven by the emergence of foundation models, including text image reconstruction and text image manipulation. Despite significant progress, challenges remain due to the unique properties that differentiate text from general objects. Effectively capturing and leveraging these distinct textual characteristics is essential for developing robust visual text processing models. In this survey, we present a comprehensive, multi-perspective analysis of recent advancements in visual text processing, focusing on two key questions: (1) What textual features are most suitable for different visual text processing tasks? (2) How can these distinctive text features be effectively incorporated into processing frameworks? Furthermore, we introduce VTPBench, a new benchmark that encompasses a broad range of visual text processing datasets. Leveraging the advanced visual quality assessment capabilities of multimodal large language models (MLLMs), we propose VTPScore, a novel evaluation metric designed to ensure fair and reliable evaluation. Our empirical study with more than 20 specific models reveals substantial room for improvement in the current techniques. Our aim is to establish this work as a fundamental resource that fosters future exploration and innovation in the dynamic field of visual text processing. The relevant repository is available at https://github.com/shuyansy/Visual-Text-Processing-survey.
Via

Apr 29, 2025
Abstract:Recent studies have revealed that text-to-image diffusion models are vulnerable to backdoor attacks, where attackers implant stealthy textual triggers to manipulate model outputs. Previous backdoor detection methods primarily focus on the static features of backdoor samples. However, a vital property of diffusion models is their inherent dynamism. This study introduces a novel backdoor detection perspective named Dynamic Attention Analysis (DAA), showing that these dynamic characteristics serve as better indicators for backdoor detection. Specifically, by examining the dynamic evolution of cross-attention maps, we observe that backdoor samples exhibit distinct feature evolution patterns at the $<$EOS$>$ token compared to benign samples. To quantify these dynamic anomalies, we first introduce DAA-I, which treats the tokens' attention maps as spatially independent and measures dynamic feature using the Frobenius norm. Furthermore, to better capture the interactions between attention maps and refine the feature, we propose a dynamical system-based approach, referred to as DAA-S. This model formulates the spatial correlations among attention maps using a graph-based state equation and we theoretically analyze the global asymptotic stability of this method. Extensive experiments across five representative backdoor attack scenarios demonstrate that our approach significantly surpasses existing detection methods, achieving an average F1 Score of 79.49% and an AUC of 87.67%. The code is available at https://github.com/Robin-WZQ/DAA.
Via

Apr 27, 2025
Abstract:The rapid evolution of deepfake technology, particularly in instruction-guided image editing, threatens the integrity of digital images by enabling subtle, context-aware manipulations. Generated conditionally from real images and textual prompts, these edits are often imperceptible to both humans and existing detection systems, revealing significant limitations in current defenses. We propose a novel multimodal capsule network, CapsFake, designed to detect such deepfake image edits by integrating low-level capsules from visual, textual, and frequency-domain modalities. High-level capsules, predicted through a competitive routing mechanism, dynamically aggregate local features to identify manipulated regions with precision. Evaluated on diverse datasets, including MagicBrush, Unsplash Edits, Open Images Edits, and Multi-turn Edits, CapsFake outperforms state-of-the-art methods by up to 20% in detection accuracy. Ablation studies validate its robustness, achieving detection rates above 94% under natural perturbations and 96% against adversarial attacks, with excellent generalization to unseen editing scenarios. This approach establishes a powerful framework for countering sophisticated image manipulations.
* 20 pages
Via

Apr 28, 2025
Abstract:Grasping has been a long-standing challenge in facilitating the final interface between a robot and the environment. As environments and tasks become complicated, the need to embed higher intelligence to infer from the surroundings and act on them has become necessary. Although most methods utilize techniques to estimate grasp pose by treating the problem via pure sampling-based approaches in the six-degree-of-freedom space or as a learning problem, they usually fail in real-life settings owing to poor generalization across domains. In addition, the time taken to generate the grasp plan and the lack of repeatability, owing to sampling inefficiency and the probabilistic nature of existing grasp planning approaches, severely limits their application in real-world tasks. This paper presents a lightweight analytical approach towards robotic grasp planning, particularly antipodal grasps, with little to no sampling in the six-degree-of-freedom space. The proposed grasp planning algorithm is formulated as an optimization problem towards estimating grasp points on the object surface instead of directly estimating the end-effector pose. To this extent, a soft-region-growing algorithm is presented for effective plane segmentation, even in the case of curved surfaces. An optimization-based quality metric is then used for the evaluation of grasp points to ensure indirect force closure. The proposed grasp framework is compared with the existing state-of-the-art grasp planning approach, Grasp pose detection (GPD), as a baseline over multiple simulated objects. The effectiveness of the proposed approach in comparison to GPD is also evaluated in a real-world setting using image and point-cloud data, with the planned grasps being executed using a ROBOTIQ gripper and UR5 manipulator.
Via

Apr 27, 2025
Abstract:Traditional 3D modeling requires technical expertise, specialized software, and time-intensive processes, making it inaccessible for many users. Our research aims to lower these barriers by combining generative AI and augmented reality (AR) into a cohesive system that allows users to easily generate, manipulate, and interact with 3D models in real time, directly within AR environments. Utilizing cutting-edge AI models like Shap-E, we address the complex challenges of transforming 2D images into 3D representations in AR environments. Key challenges such as object isolation, handling intricate backgrounds, and achieving seamless user interaction are tackled through advanced object detection methods, such as Mask R-CNN. Evaluation results from 35 participants reveal an overall System Usability Scale (SUS) score of 69.64, with participants who engaged with AR/VR technologies more frequently rating the system significantly higher, at 80.71. This research is particularly relevant for applications in gaming, education, and AR-based e-commerce, offering intuitive, model creation for users without specialized skills.
Via

Apr 25, 2025
Abstract:Tactile sensing plays a crucial role in robot grasping and manipulation by providing essential contact information between the robot and the environment. In this paper, we present AllTact Fin Ray, a novel compliant gripper design with omni-directional and local tactile sensing capabilities. The finger body is unibody-casted using transparent elastic silicone, and a camera positioned at the base of the finger captures the deformation of the whole body and the contact face. Due to the global deformation of the adaptive structure, existing vision-based tactile sensing approaches that assume constant illumination are no longer applicable. To address this, we propose a novel sensing method where the global deformation is first reconstructed from the image using edge features and spatial constraints. Then, detailed contact geometry is computed from the brightness difference against a dynamically retrieved reference image. Extensive experiments validate the effectiveness of our proposed gripper design and sensing method in contact detection, force estimation, object grasping, and precise manipulation.
Via

Apr 22, 2025
Abstract:In order for robots to be useful, they must perform practically relevant tasks in the real world, outside of the lab. While vision-language-action (VLA) models have demonstrated impressive results for end-to-end robot control, it remains an open question how far such models can generalize in the wild. We describe $\pi_{0.5}$, a new model based on $\pi_{0}$ that uses co-training on heterogeneous tasks to enable broad generalization. $\pi_{0.5}$\ uses data from multiple robots, high-level semantic prediction, web data, and other sources to enable broadly generalizable real-world robotic manipulation. Our system uses a combination of co-training and hybrid multi-modal examples that combine image observations, language commands, object detections, semantic subtask prediction, and low-level actions. Our experiments show that this kind of knowledge transfer is essential for effective generalization, and we demonstrate for the first time that an end-to-end learning-enabled robotic system can perform long-horizon and dexterous manipulation skills, such as cleaning a kitchen or bedroom, in entirely new homes.
Via

Apr 15, 2025
Abstract:Recent advances in image generation, particularly diffusion models, have significantly lowered the barrier for creating sophisticated forgeries, making image manipulation detection and localization (IMDL) increasingly challenging. While prior work in IMDL has focused largely on natural images, the anime domain remains underexplored-despite its growing vulnerability to AI-generated forgeries. Misrepresentations of AI-generated images as hand-drawn artwork, copyright violations, and inappropriate content modifications pose serious threats to the anime community and industry. To address this gap, we propose AnimeDL-2M, the first large-scale benchmark for anime IMDL with comprehensive annotations. It comprises over two million images including real, partially manipulated, and fully AI-generated samples. Experiments indicate that models trained on existing IMDL datasets of natural images perform poorly when applied to anime images, highlighting a clear domain gap between anime and natural images. To better handle IMDL tasks in anime domain, we further propose AniXplore, a novel model tailored to the visual characteristics of anime imagery. Extensive evaluations demonstrate that AniXplore achieves superior performance compared to existing methods. Dataset and code can be found in https://flytweety.github.io/AnimeDL2M/.
Via
