Abstract:Large language models (LLMs) demonstrate impressive capabilities across diverse tasks but raise concerns about privacy, copyright, and harmful materials. Existing LLM unlearning methods rarely consider the continual and high-volume nature of real-world deletion requests, which can cause utility degradation and catastrophic forgetting as requests accumulate. To address this challenge, we introduce \fit, a framework for continual unlearning that handles large numbers of deletion requests while maintaining robustness against both catastrophic forgetting and post-unlearning recovery. \fit mitigates degradation through rigorous data \underline{F}iltering, \underline{I}mportance-aware updates, and \underline{T}argeted layer attribution, enabling stable performance across long sequences of unlearning operations and achieving a favorable balance between forgetting effectiveness and utility retention. To support realistic evaluation, we present \textbf{PCH}, a benchmark covering \textbf{P}ersonal information, \textbf{C}opyright, and \textbf{H}armful content in sequential deletion scenarios, along with two symmetric metrics, Forget Degree (F.D.) and Retain Utility (R.U.), which jointly assess forgetting quality and utility preservation. Extensive experiments on four open-source LLMs with hundreds of deletion requests show that \fit achieves the strongest trade-off between F.D. and R.U., surpasses existing methods on MMLU, CommonsenseQA, and GSM8K, and remains resistant against both relearning and quantization recovery attacks.
Abstract:Many machine learning models are fine-tuned from large language models (LLMs) to achieve high performance in specialized domains like code generation, biomedical analysis, and mathematical problem solving. However, this fine-tuning process often introduces a critical vulnerability: the systematic degradation of safety alignment, undermining ethical guidelines and increasing the risk of harmful outputs. Addressing this challenge, we introduce EnchTable, a novel framework designed to transfer and maintain safety alignment in downstream LLMs without requiring extensive retraining. EnchTable leverages a Neural Tangent Kernel (NTK)-based safety vector distillation method to decouple safety constraints from task-specific reasoning, ensuring compatibility across diverse model architectures and sizes. Additionally, our interference-aware merging technique effectively balances safety and utility, minimizing performance compromises across various task domains. We implemented a fully functional prototype of EnchTable on three different task domains and three distinct LLM architectures, and evaluated its performance through extensive experiments on eleven diverse datasets, assessing both utility and model safety. Our evaluations include LLMs from different vendors, demonstrating EnchTable's generalization capability. Furthermore, EnchTable exhibits robust resistance to static and dynamic jailbreaking attacks, outperforming vendor-released safety models in mitigating adversarial prompts. Comparative analyses with six parameter modification methods and two inference-time alignment baselines reveal that EnchTable achieves a significantly lower unsafe rate, higher utility score, and universal applicability across different task domains. Additionally, we validate EnchTable can be seamlessly integrated into various deployment pipelines without significant overhead.
Abstract:As Diffusion Models (DM) generate increasingly realistic images, related issues such as copyright and misuse have become a growing concern. Watermarking is one of the promising solutions. Existing methods inject the watermark into the single-domain of initial Gaussian noise for generation, which suffers from unsatisfactory robustness. This paper presents the first dual-domain DM watermarking approach using a pipelined injector to consistently embed watermarks in both the spatial and frequency domains. To further boost robustness against certain image manipulations and advanced attacks, we introduce a model-independent learnable Gaussian Noise Restorer (GNR) to refine Gaussian noise extracted from manipulated images and enhance detection robustness by integrating the detection scores of both watermarks. GaussMarker efficiently achieves state-of-the-art performance under eight image distortions and four advanced attacks across three versions of Stable Diffusion with better recall and lower false positive rates, as preferred in real applications.
Abstract:The rapid development of video generative models has led to a surge in highly realistic synthetic videos, raising ethical concerns related to disinformation and copyright infringement. Recently, video watermarking has been proposed as a mitigation strategy by embedding invisible marks into AI-generated videos to enable subsequent detection. However, the robustness of existing video watermarking methods against both common and adversarial perturbations remains underexplored. In this work, we introduce VideoMarkBench, the first systematic benchmark designed to evaluate the robustness of video watermarks under watermark removal and watermark forgery attacks. Our study encompasses a unified dataset generated by three state-of-the-art video generative models, across three video styles, incorporating four watermarking methods and seven aggregation strategies used during detection. We comprehensively evaluate 12 types of perturbations under white-box, black-box, and no-box threat models. Our findings reveal significant vulnerabilities in current watermarking approaches and highlight the urgent need for more robust solutions. Our code is available at https://github.com/zhengyuan-jiang/VideoMarkBench.
Abstract:The visual quality of an image is confounded by a number of intertwined factors including its semantic content, distortion characteristics and appearance properties such as brightness, contrast, sharpness, and colourfulness. Distilling high level knowledge about all these quality bearing attributes is crucial for developing objective Image Quality Assessment (IQA).While existing solutions have modeled some of these aspects, a comprehensive solution that involves all these important quality related attributes has not yet been developed. In this paper, we present a new blind IQA (BIQA) model termed Self-supervision and Vision-Language supervision Image QUality Evaluator (SLIQUE) that features a joint vision-language and visual contrastive representation learning framework for acquiring high level knowledge about the images semantic contents, distortion characteristics and appearance properties for IQA. For training SLIQUE, we have developed a systematic approach to constructing a first of its kind large image database annotated with all three categories of quality relevant texts. The Text Annotated Distortion, Appearance and Content (TADAC) database has over 1.6 million images annotated with textual descriptions of their semantic contents, distortion characteristics and appearance properties. The method for constructing TADAC and the database itself will be particularly useful for exploiting vision-language modeling for advanced IQA applications. Extensive experimental results show that SLIQUE has superior performances over state of the art, demonstrating the soundness of its design principle and the effectiveness of its implementation.