We analyze initialization dynamics for LDLT-based $\mathcal{L}$-Lipschitz layers by deriving the exact marginal output variance when the underlying parameter matrix $W_0\in \mathbb{R}^{m\times n}$ is initialized with IID Gaussian entries $\mathcal{N}(0,σ^2)$. The Wishart distribution, $S=W_0W_0^\top\sim\mathcal{W}_m(n,σ^2 \boldsymbol{I}_m)$, used for computing the output marginal variance is derived in closed form using expectations of zonal polynomials via James' theorem and a Laplace-integral expansion of $(α\boldsymbol{I}_m+S)^{-1}$. We develop an Isserlis/Wick-based combinatorial expansion for $\operatorname{\mathbb{E}}\left[\operatorname{tr}(S^k)\right]$ and provide explicit truncated moments up to $k=10$, which yield accurate series approximations for small-to-moderate $σ^2$. Monte Carlo experiments confirm the theoretical estimates. Furthermore, empirical analysis was performed to quantify that, using current He or Kaiming initialization with scaling $1/\sqrt{n}$, the output variance is $0.41$, whereas the new parameterization with $10/ \sqrt{n}$ for $α=1$ results in an output variance of $0.9$. The findings clarify why deep $\mathcal{L}$-Lipschitz networks suffer rapid information loss at initialization and offer practical prescriptions for choosing initialization hyperparameters to mitigate this effect. However, using the Higgs boson classification dataset, a hyperparameter sweep over optimizers, initialization scale, and depth was conducted to validate the results on real-world data, showing that although the derivation ensures variance preservation, empirical results indicate He initialization still performs better.
While quantum annealing (QA) has been developed for combinatorial optimization, practical QA devices operate at finite temperature and under noise, and their outputs can be regarded as stochastic samples close to a Gibbs--Boltzmann distribution. In this study, we propose a QA-in-the-loop kernel learning framework that integrates QA not merely as a substitute for Markov-chain Monte Carlo sampling but as a component that directly determines the learned kernel for regression. Based on Bochner's theorem, a shift-invariant kernel is represented as an expectation over a spectral distribution, and random Fourier features (RFF) approximate the kernel by sampling frequencies. We model the spectral distribution with a (multi-layer) restricted Boltzmann machine (RBM), generate discrete RBM samples using QA, and map them to continuous frequencies via a Gaussian--Bernoulli transformation. Using the resulting RFF, we construct a data-adaptive kernel and perform Nadaraya--Watson (NW) regression. Because the RFF approximation based on $\cos(\bmω^{\top}Δ\bm{x})$ can yield small negative values and cancellation across neighbors, the Nadaraya--Watson denominator $\sum_j k_{ij}$ may become close to zero. We therefore employ nonnegative squared-kernel weights $w_{ij}=k(\bm{x}_i,\bm{x}_j)^2$, which also enhances the contrast of kernel weights. The kernel parameters are trained by minimizing the leave-one-out NW mean squared error, and we additionally evaluate local linear regression with the same squared-kernel weights at inference. Experiments on multiple benchmark regression datasets demonstrate a decrease in training loss, accompanied by structural changes in the kernel matrix, and show that the learned kernel tends to improve $R^2$ and RMSE over the baseline Gaussian-kernel NW. Increasing the number of random features at inference further enhances accuracy.
Finite-time central limit theorem (CLT) rates play a central role in modern machine learning (ML). In this paper, we study CLT rates for multivariate dependent data in Wasserstein-$p$ ($\mathcal W_p$) distance, for general $p\ge 1$. We focus on two fundamental dependence structures that commonly arise in ML: locally dependent sequences and geometrically ergodic Markov chains. In both settings, we establish the \textit{first optimal} $\mathcal O(n^{-1/2})$ rate in $\mathcal W_1$, as well as the first $\mathcal W_p$ ($p\ge 2$) CLT rates under mild moment assumptions, substantially improving the best previously known bounds in these dependent-data regimes. As an application of our optimal $\mathcal W_1$ rate for locally dependent sequences, we further obtain the first optimal $\mathcal W_1$--CLT rate for multivariate $U$-statistics. On the technical side, we derive a tractable auxiliary bound for $\mathcal W_1$ Gaussian approximation errors that is well suited to studying dependent data. For Markov chains, we further prove that the regeneration time of the split chain associated with a geometrically ergodic chain has a geometric tail without assuming strong aperiodicity or other restrictive conditions. These tools may be of independent interests and enable our optimal $\mathcal W_1$ rates and underpin our $\mathcal W_p$ ($p\ge 2$) results.
Warmth (W) (often further broken down into Trust (T) and Sociability (S)) and Competence (C) are central dimensions along which people evaluate individuals and social groups (Fiske, 2018). While these constructs are well established in social psychology, they are only starting to get attention in NLP research through word-level lexicons, which do not completely capture their contextual expression in larger text units and discourse. In this work, we introduce Warmth and Competence Sentences (W&C-Sent), the first sentence-level dataset annotated for warmth and competence. The dataset includes over 1,600 English sentence--target pairs annotated along three dimensions: trust and sociability (components of warmth), and competence. The sentences in W&C-Sent are from social media and often express attitudes and opinions about specific individuals or social groups (the targets of our annotations). We describe the data collection, annotation, and quality-control procedures in detail, and evaluate a range of large language models (LLMs) on their ability to identify trust, sociability, and competence in text. W&C-Sent provides a new resource for analyzing warmth and competence in language and supports future research at the intersection of NLP and computational social science.
Applying weight decay (WD) to matrix layers is standard practice in large-language-model pretraining. Prior work suggests that stochastic gradient noise induces a Brownian-like expansion of the weight matrices W, whose growth is counteracted by WD, leading to a WD-noise equilibrium with a certain weight norm ||W||. In this work, we view the equilibrium norm as a harmful artifact of the training procedure, and address it by introducing learnable multipliers to learn the optimal scale. First, we attach a learnable scalar multiplier to W and confirm that the WD-noise equilibrium norm is suboptimal: the learned scale adapts to data and improves performance. We then argue that individual row and column norms are similarly constrained, and free their scale by introducing learnable per-row and per-column multipliers. Our method can be viewed as a learnable, more expressive generalization of muP multipliers. It outperforms a well-tuned muP baseline, reduces the computational overhead of multiplier tuning, and surfaces practical questions such as forward-pass symmetries and the width-scaling of the learned multipliers. Finally, we validate learnable multipliers with both Adam and Muon optimizers, where it shows improvement in downstream evaluations matching the improvement of the switching from Adam to Muon.
We propose a discrete transport equation on graphs which connects distributions on both vertices and edges. We then derive a discrete analogue of the Benamou-Brenier formulation for Wasserstein-$1$ distance on a graph and as a result classify all $W_1$ geodesics on graphs.
Motivated by recent work on the experts problem in the streaming model, we consider the experts problem in the sliding window model. The sliding window model is a well-studied model that captures applications such as traffic monitoring, epidemic tracking, and automated trading, where recent information is more valuable than older data. Formally, we have $n$ experts, $T$ days, the ability to query the predictions of $q$ experts on each day, a limited amount of memory, and should achieve the (near-)optimal regret $\sqrt{nW}\text{polylog}(nT)$ regret over any window of the last $W$ days. While it is impossible to achieve such regret with $1$ query, we show that with $2$ queries we can achieve such regret and with only $\text{polylog}(nT)$ bits of memory. Not only are our algorithms optimal for sliding windows, but we also show for every interval $\mathcal{I}$ of days that we achieve $\sqrt{n|\mathcal{I}|}\text{polylog}(nT)$ regret with $2$ queries and only $\text{polylog}(nT)$ bits of memory, providing an exponential improvement on the memory of previous interval regret algorithms. Building upon these techniques, we address the bandit problem in data streams, where $q=1$, achieving $n T^{2/3}\text{polylog}(T)$ regret with $\text{polylog}(nT)$ memory, which is the first sublinear regret in the streaming model in the bandit setting with polylogarithmic memory; this can be further improved to the optimal $\mathcal{O}(\sqrt{nT})$ regret if the best expert's losses are in a random order.
We provide new insights into an open problem recently posed by Yuan-Sun [ISIT 2025], concerning the minimum individual key rate required in the vector linear secure aggregation problem. Consider a distributed system with $K$ users, where each user $k\in [K]$ holds a data stream $W_k$ and an individual key $Z_k$. A server aims to compute a linear function $\mathbf{F}[W_1;\ldots;W_K]$ without learning any information about another linear function $\mathbf{G}[W_1;\ldots;W_K]$, where $[W_1;\ldots;W_K]$ denotes the row stack of $W_1,\ldots,W_K$. The open problem is to determine the minimum required length of $Z_k$, denoted as $R_k$, $k\in [K]$. In this paper, we characterize a new achievable region for the rate tuple $(R_1,\ldots,R_K)$. The region is polyhedral, with vertices characterized by a binary rate assignment $(R_1,\ldots,R_K) = (\mathbf{1}(1 \in \mathcal{I}),\ldots,\mathbf{1}(K\in \mathcal{I}))$, where $\mathcal{I}\subseteq [K]$ satisfies the \textit{rank-increment condition}: $\mathrm{rank}\left(\bigl[\mathbf{F}_{\mathcal{I}};\mathbf{G}_{\mathcal{I}}\bigr]\right) =\mathrm{rank}\bigl(\mathbf{F}_{\mathcal{I}}\bigr)+N$. Here, $\mathbf{F}_\mathcal{I}$ and $\mathbf{G}_\mathcal{I}$ are the submatrices formed by the columns indexed by $\mathcal{I}$. Our results uncover the novel fact that it is not necessary for every user to hold a key, thereby strictly enlarging the best-known achievable region in the literature. Furthermore, we provide a converse analysis to demonstrate its optimality when minimizing the number of users that hold keys.
The deployment of transformer-based models on resource-constrained edge devices represents a critical challenge in enabling real-time artificial intelligence applications. This comprehensive survey examines lightweight transformer architectures specifically designed for edge deployment, analyzing recent advances in model compression, quantization, pruning, and knowledge distillation techniques. We systematically review prominent lightweight variants including MobileBERT, TinyBERT, DistilBERT, EfficientFormer, EdgeFormer, and MobileViT, providing detailed performance benchmarks on standard datasets such as GLUE, SQuAD, ImageNet-1K, and COCO. Our analysis encompasses current industry adoption patterns across major hardware platforms (NVIDIA Jetson, Qualcomm Snapdragon, Apple Neural Engine, ARM architectures), deployment frameworks (TensorFlow Lite, ONNX Runtime, PyTorch Mobile, CoreML), and optimization strategies. Experimental results demonstrate that modern lightweight transformers can achieve 75-96% of full-model accuracy while reducing model size by 4-10x and inference latency by 3-9x, enabling deployment on devices with as little as 2-5W power consumption. We identify sparse attention mechanisms, mixed-precision quantization (INT8/FP16), and hardware-aware neural architecture search as the most effective optimization strategies. Novel findings include memory-bandwidth bottleneck analysis revealing 15-40M parameter models achieve optimal hardware utilization (60-75% efficiency), quantization sweet spots for different model types, and comprehensive energy efficiency profiling across edge platforms. We establish real-time performance boundaries and provide a practical 6-step deployment pipeline achieving 8-12x size reduction with less than 2% accuracy degradation.
We propose EgoGrasp, the first method to reconstruct world-space hand-object interactions (W-HOI) from egocentric monocular videos with dynamic cameras in the wild. Accurate W-HOI reconstruction is critical for understanding human behavior and enabling applications in embodied intelligence and virtual reality. However, existing hand-object interactions (HOI) methods are limited to single images or camera coordinates, failing to model temporal dynamics or consistent global trajectories. Some recent approaches attempt world-space hand estimation but overlook object poses and HOI constraints. Their performance also suffers under severe camera motion and frequent occlusions common in egocentric in-the-wild videos. To address these challenges, we introduce a multi-stage framework with a robust pre-process pipeline built on newly developed spatial intelligence models, a whole-body HOI prior model based on decoupled diffusion models, and a multi-objective test-time optimization paradigm. Our HOI prior model is template-free and scalable to multiple objects. In experiments, we prove our method achieving state-of-the-art performance in W-HOI reconstruction.