Manual inspections for solar panel systems are a tedious, costly, and error-prone task, making it desirable for Unmanned Aerial Vehicle (UAV) based monitoring. Though deep learning models have excellent fault detection capabilities, almost all methods either are too large and heavy for edge computing devices or involve biased estimation of accuracy due to ineffective learning techniques. We propose a new solar panel fault detection model called HybridSolarNet. It integrates EfficientNet-B0 with Convolutional Block Attention Module (CBAM). We implemented it on the Kaggle Solar Panel Images competition dataset with a tight split-before-augmentation protocol. It avoids leakage in accuracy estimation. We introduced focal loss and cosine annealing. Ablation analysis validates that accuracy boosts due to added benefits from CBAM (+1.53%) and that there are benefits from recognition of classes with imbalanced samples via focal loss. Overall average accuracy on 5-fold stratified cross-validation experiments on the given competition dataset topped 92.37% +/- 0.41 and an F1-score of 0.9226 +/- 0.39 compared to baselines like VGG19, requiring merely 16.3 MB storage, i.e., 32 times less. Its inference speed measured at 54.9 FPS with GPU support makes it a successful candidate for real-time UAV implementation. Moreover, visualization obtained from Grad-CAM illustrates that HybridSolarNet focuses on actual locations instead of irrelevant ones.
This paper presents a large language model (LLM)-based framework for detecting cyberattacks on transformer current differential relays (TCDRs), which, if undetected, may trigger false tripping of critical transformers. The proposed approach adapts and fine-tunes compact LLMs such as DistilBERT to distinguish cyberattacks from actual faults using textualized multidimensional TCDR current measurements recorded before and after tripping. Our results demonstrate that DistilBERT detects 97.6% of cyberattacks without compromising TCDR dependability and achieves inference latency below 6 ms on a commercial workstation. Additional evaluations confirm the framework's robustness under combined time-synchronization and false-data-injection attacks, resilience to measurement noise, and stability across prompt formulation variants. Furthermore, GPT-2 and DistilBERT+LoRA achieve comparable performance, highlighting the potential of LLMs for enhancing smart grid cybersecurity. We provide the full dataset used in this study for reproducibility.
Strawberry harvesting robots faced persistent challenges such as low integration of visual perception, fruit-gripper misalignment, empty grasping, and strawberry slippage from the gripper due to insufficient gripping force, all of which compromised harvesting stability and efficiency in orchard environments. To overcome these issues, this paper proposed a visual fault diagnosis and self-recovery framework that integrated multi-task perception with corrective control strategies. At the core of this framework was SRR-Net, an end-to-end multi-task perception model that simultaneously performed strawberry detection, segmentation, and ripeness estimation, thereby unifying visual perception with fault diagnosis. Based on this integrated perception, a relative error compensation method based on the simultaneous target-gripper detection was designed to address positional misalignment, correcting deviations when error exceeded the tolerance threshold. To mitigate empty grasping and fruit-slippage faults, an early abort strategy was implemented. A micro-optical camera embedded in the end-effector provided real-time visual feedback, enabling grasp detection during the deflating stage and strawberry slip prediction during snap-off through MobileNet V3-Small classifier and a time-series LSTM classifier. Experiments demonstrated that SRR-Net maintained high perception accuracy. For detection, it achieved a precision of 0.895 and recall of 0.813 on strawberries, and 0.972/0.958 on hands. In segmentation, it yielded a precision of 0.887 and recall of 0.747 for strawberries, and 0.974/0.947 for hands. For ripeness estimation, SRR-Net attained a mean absolute error of 0.035, while simultaneously supporting multi-task perception and sustaining a competitive inference speed of 163.35 FPS.
This paper presents a new detection method of faults at Nanosatellites' electrical power without an Attitude Determination Control Subsystem (ADCS) at the LEO orbit. Each part of this system is at risk of fault due to pressure tolerance, launcher pressure, and environmental circumstances. Common faults are line to line fault and open circuit for the photovoltaic subsystem, short circuit and open circuit IGBT at DC to DC converter, and regulator fault of the ground battery. The system is simulated without fault based on a neural network using solar radiation and solar panel's surface temperature as input data and current and load as outputs. Finally, using the neural network classifier, different faults are diagnosed by pattern and type of fault. For fault classification, other machine learning methods are also used, such as PCA classification, decision tree, and KNN.
Fault diagnosis of lithium-ion batteries is critical for system safety. While existing deep learning methods exhibit superior detection accuracy, their "black-box" nature hinders interpretability. Furthermore, restricted by binary classification paradigms, they struggle to provide root cause analysis and maintenance recommendations. To address these limitations, this paper proposes BatteryAgent, a hierarchical framework that integrates physical knowledge features with the reasoning capabilities of Large Language Models (LLMs). The framework comprises three core modules: (1) A Physical Perception Layer that utilizes 10 mechanism-based features derived from electrochemical principles, balancing dimensionality reduction with physical fidelity; (2) A Detection and Attribution Layer that employs Gradient Boosting Decision Trees and SHAP to quantify feature contributions; and (3) A Reasoning and Diagnosis Layer that leverages an LLM as the agent core. This layer constructs a "numerical-semantic" bridge, combining SHAP attributions with a mechanism knowledge base to generate comprehensive reports containing fault types, root cause analysis, and maintenance suggestions. Experimental results demonstrate that BatteryAgent effectively corrects misclassifications on hard boundary samples, achieving an AUROC of 0.986, which significantly outperforms current state-of-the-art methods. Moreover, the framework extends traditional binary detection to multi-type interpretable diagnosis, offering a new paradigm shift from "passive detection" to "intelligent diagnosis" for battery safety management.
Human biological systems sustain life through extraordinary resilience, continually detecting damage, orchestrating targeted responses, and restoring function through self-healing. Inspired by these capabilities, this paper introduces ReCiSt, a bio-inspired agentic self-healing framework designed to achieve resilience in Distributed Computing Continuum Systems (DCCS). Modern DCCS integrate heterogeneous computing resources, ranging from resource-constrained IoT devices to high-performance cloud infrastructures, and their inherent complexity, mobility, and dynamic operating conditions expose them to frequent faults that disrupt service continuity. These challenges underscore the need for scalable, adaptive, and self-regulated resilience strategies. ReCiSt reconstructs the biological phases of Hemostasis, Inflammation, Proliferation, and Remodeling into the computational layers Containment, Diagnosis, Meta-Cognitive, and Knowledge for DCCS. These four layers perform autonomous fault isolation, causal diagnosis, adaptive recovery, and long-term knowledge consolidation through Language Model (LM)-powered agents. These agents interpret heterogeneous logs, infer root causes, refine reasoning pathways, and reconfigure resources with minimal human intervention. The proposed ReCiSt framework is evaluated on public fault datasets using multiple LMs, and no baseline comparison is included due to the scarcity of similar approaches. Nevertheless, our results, evaluated under different LMs, confirm ReCiSt's self-healing capabilities within tens of seconds with minimum of 10% of agent CPU usage. Our results also demonstrated depth of analysis to over come uncertainties and amount of micro-agents invoked to achieve resilience.
Securing blockchain-enabled IoT networks against sophisticated adversarial attacks remains a critical challenge. This paper presents a trust-based delegated consensus framework integrating Fully Homomorphic Encryption (FHE) with Attribute-Based Access Control (ABAC) for privacy-preserving policy evaluation, combined with learning-based defense mechanisms. We systematically compare three reinforcement learning approaches -- tabular Q-learning (RL), Deep RL with Dueling Double DQN (DRL), and Multi-Agent RL (MARL) -- against five distinct attack families: Naive Malicious Attack (NMA), Collusive Rumor Attack (CRA), Adaptive Adversarial Attack (AAA), Byzantine Fault Injection (BFI), and Time-Delayed Poisoning (TDP). Experimental results on a 16-node simulated IoT network reveal significant performance variations: MARL achieves superior detection under collusive attacks (F1=0.85 vs. DRL's 0.68 and RL's 0.50), while DRL and MARL both attain perfect detection (F1=1.00) against adaptive attacks where RL fails (F1=0.50). All agents successfully defend against Byzantine attacks (F1=1.00). Most critically, the Time-Delayed Poisoning attack proves catastrophic for all agents, with F1 scores dropping to 0.11-0.16 after sleeper activation, demonstrating the severe threat posed by trust-building adversaries. Our findings indicate that coordinated multi-agent learning provides measurable advantages for defending against sophisticated trust manipulation attacks in blockchain IoT environments.
In collective motion, perceptually-limited individuals move in an ordered manner, without centralized control. The perception of each individual is highly localized, as is its ability to interact with others. While natural collective motion is robust, most artificial swarms are brittle. This particularly occurs when vision is used as the sensing modality, due to ambiguities and information-loss inherent in visual perception. This paper presents mechanisms for robust collective motion inspired by studies of locusts. First, we develop a robust distance estimation method that combines visually perceived horizontal and vertical sizes of neighbors. Second, we introduce intermittent locomotion as a mechanism that allows robots to reliably detect peers that fail to keep up, and disrupt the motion of the swarm. We show how such faulty robots can be avoided in a manner that is robust to errors in classifying them as faulty. Through extensive physics-based simulation experiments, we show dramatic improvements to swarm resilience when using these techniques. We show these are relevant to both distance-based Avoid-Attract models, as well as to models relying on Alignment, in a wide range of experiment settings.




Use cases for emerging quantum computing platforms become economically relevant as the efficiency of processing and availability of quantum computers increase. We assess the performance of Restricted Boltzmann Machines (RBM) assisted by quantum computing, running on real quantum hardware and simulators, using a real dataset containing 145 million transactions provided by Stone, a leading Brazilian fintech, for credit card fraud detection. The results suggest that the quantum-assisted RBM method is able to achieve superior performance in most figures of merit in comparison to classical approaches, even using current noisy quantum annealers. Our study paves the way for implementing quantum-assisted RBMs for general fault detection in financial systems.




This paper presents a novel methodology for detecting faults in wind turbine blades using com-putational learning techniques. The study evaluates two models: the first employs logistic regression, which outperformed neural networks, decision trees, and the naive Bayes method, demonstrating its effectiveness in identifying fault-related patterns. The second model leverages clustering and achieves superior performance in terms of precision and data segmentation. The results indicate that clustering may better capture the underlying data characteristics compared to supervised methods. The proposed methodology offers a new approach to early fault detection in wind turbine blades, highlighting the potential of integrating different computational learning techniques to enhance system reliability. The use of accessible tools like Orange Data Mining underscores the practical application of these advanced solutions within the wind energy sector. Future work will focus on combining these methods to improve detection accuracy further and extend the application of these techniques to other critical components in energy infrastructure.