Atmospheric blocking events drive persistent weather extremes in midlatitudes, but isolating the influence of sea surface temperature (SST) from chaotic internal atmospheric variability on these events remains a challenge. We address this challenge using century-long (1900-2010), large-ensemble simulations with two computationally efficient deep-learning general circulation models. We find these models skillfully reproduce the observed blocking climatology, matching or exceeding the performance of a traditional high-resolution model and representative CMIP6 models. Averaging the large ensembles filters internal atmospheric noise to isolate the SST-forced component of blocking variability, yielding substantially higher correlations with reanalysis than for individual ensemble members. We identify robust teleconnections linking Greenland blocking frequency to North Atlantic SST and El Niño-like patterns. Furthermore, SST-forced trends in blocking frequency show a consistent decline in winter over Greenland, and an increase over Europe. These results demonstrate that SST variability exerts a significant and physically interpretable influence on blocking frequency and establishes large ensembles from deep learning models as a powerful tool for separating forced SST signals from internal noise.
Quantum chemistry is a foundational enabling tool for the fields of chemistry, materials science, computational biology and others. Despite of its power, the practical application of quantum chemistry simulations remains in the hands of qualified experts due to methodological complexity, software heterogeneity, and the need for informed interpretation of results. To bridge the accessibility gap for these tools and expand their reach to chemists with broader backgrounds, we introduce El Agente Quntur, a hierarchical, multi-agent AI system designed to operate not merely as an automation tool but as a research collaborator for computational quantum chemistry. Quntur was designed following three main strategies: i) elimination of hard-coded procedural policies in favour of reasoning-driven decisions, ii) construction of general and composable actions that facilitate generalization and efficiency, and iii) implementation of guided deep research to integrate abstract quantum-chemical reasoning across subdisciplines and a detailed understanding of the software's internal logic and syntax. Although instantiated in ORCA, these design principles are applicable to research agents more generally and easily expandable to additional quantum chemistry packages and beyond. Quntur supports the full range of calculations available in ORCA 6.0 and reasons over software documentation and scientific literature to plan, execute, adapt, and analyze in silico chemistry experiments following best practices. We discuss the advances and current bottlenecks in agentic systems operating at the research level in computational chemistry, and outline a roadmap toward a fully autonomous end-to-end computational chemistry research agent.
We present El Agente Estructural, a multimodal, natural-language-driven geometry-generation and manipulation agent for autonomous chemistry and molecular modelling. Unlike molecular generation or editing via generative models, Estructural mimics how human experts directly manipulate molecular systems in three dimensions by integrating a comprehensive set of domain-informed tools and vision-language models. This design enables precise control over atomic or functional group replacements, atomic connectivity, and stereochemistry without the need to rebuild extensive core molecular frameworks. Through a series of representative case studies, we demonstrate that Estructural enables chemically meaningful geometry manipulation across a wide range of real-world scenarios. These include site-selective functionalization, ligand binding, ligand exchange, stereochemically controlled structure construction, isomer interconversion, fragment-level structural analysis, image-guided generation of structures from schematic reaction mechanisms, and mechanism-driven geometry generation and modification. These examples illustrate how multimodal reasoning, when combined with specialized geometry-aware tools, supports interactive and context-aware molecular modelling beyond structure generation. Looking forward, the integration of Estructural into El Agente Quntur, an autonomous multi-agent quantum chemistry platform, enhances its capabilities by adding sophisticated tools for the generation and editing of three-dimensional structures.
Historical archives contain qualitative descriptions of climate events, yet converting these into quantitative records has remained a fundamental challenge. Here we introduce a paradigm shift: a generative AI framework that inverts the logic of historical chroniclers by inferring the quantitative climate patterns associated with documented events. Applied to historical Chinese archives, it produces the sub-annual precipitation reconstruction for southeastern China over the period 1368-1911 AD. Our reconstruction not only quantifies iconic extremes like the Ming Dynasty's Great Drought but also, crucially, maps the full spatial and seasonal structure of El Ni$ñ$o influence on precipitation in this region over five centuries, revealing dynamics inaccessible in shorter modern records. Our methodology and high-resolution climate dataset are directly applicable to climate science and have broader implications for the historical and social sciences.
Machine learning models in high-stakes applications, such as recidivism prediction and automated personnel selection, often exhibit systematic performance disparities across sensitive subpopulations, raising critical concerns regarding algorithmic bias. Fairness auditing addresses these risks through two primary functions: certification, which verifies adherence to fairness constraints; and flagging, which isolates specific demographic groups experiencing disparate treatment. However, existing auditing techniques are frequently limited by restrictive distributional assumptions or prohibitive computational overhead. We propose a novel empirical likelihood-based (EL) framework that constructs robust statistical measures for model performance disparities. Unlike traditional methods, our approach is non-parametric; the proposed disparity statistics follow asymptotically chi-square or mixed chi-square distributions, ensuring valid inference without assuming underlying data distributions. This framework uses a constrained optimization profile that admits stable numerical solutions, facilitating both large-scale certification and efficient subpopulation discovery. Empirically, the EL methods outperform bootstrap-based approaches, yielding coverage rates closer to nominal levels while reducing computational latency by several orders of magnitude. We demonstrate the practical utility of this framework on the COMPAS dataset, where it successfully flags intersectional biases, specifically identifying a significantly higher positive prediction rate for African-American males under 25 and a systemic under-prediction for Caucasian females relative to the population mean.
Coffee yields are contingent on the timely and accurate diagnosis of diseases; however, assessing leaf diseases in the field presents significant challenges. Although Artificial Intelligence (AI) vision models achieve high accuracy, their adoption is hindered by the limitations of constrained devices and intermittent connectivity. This study aims to facilitate sustainable on-device diagnosis through knowledge distillation: high-capacity Convolutional Neural Networks (CNNs) trained in data centers transfer knowledge to compact CNNs through Ensemble Learning (EL). Furthermore, dense tiny pairs were integrated through simple and optimized ensembling to enhance accuracy while adhering to strict computational and energy constraints. On a curated coffee leaf dataset, distilled tiny ensembles achieved competitive with prior work with significantly reduced energy consumption and carbon footprint. This indicates that lightweight models, when properly distilled and ensembled, can provide practical diagnostic solutions for Internet of Things (IoT) applications.
Climate prediction is a challenge due to the intricate spatiotemporal patterns within Earth systems. Global climate indices, such as the El Niño Southern Oscillation, are standard input features for long-term rainfall prediction. However, a significant gap persists regarding local-scale indices capable of improving predictive accuracy in specific regions of Thailand. This paper introduces a novel NorthEast monsoon climate index calculated from sea surface temperature to reflect the climatology of the boreal winter monsoon. To optimise the calculated areas used for this index, a Deep Q-Network reinforcement learning agent explores and selects the most effective rectangles based on their correlation with seasonal rainfall. Rainfall stations were classified into 12 distinct clusters to distinguish rainfall patterns between southern and upper Thailand. Experimental results show that incorporating the optimised index into Long Short-Term Memory models significantly improves long-term monthly rainfall prediction skill in most cluster areas. This approach effectively reduces the Root Mean Square Error for 12-month-ahead forecasts.
The advent of Large Multimodal Models (LMMs) offers a promising technology to tackle the limitations of modular design in autonomous driving, which often falters in open-world scenarios requiring sustained environmental understanding and logical reasoning. Besides, embodied artificial intelligence facilitates policy optimization through closed-loop interactions to achieve the continuous learning capability, thereby advancing autonomous driving toward embodied intelligent (El) driving. However, such capability will be constrained by relying solely on LMMs to enhance EI driving without joint decision-making. This article introduces a novel semantics and policy dual-driven hybrid decision framework to tackle this challenge, ensuring continuous learning and joint decision. The framework merges LMMs for semantic understanding and cognitive representation, and deep reinforcement learning (DRL) for real-time policy optimization. We starts by introducing the foundational principles of EI driving and LMMs. Moreover, we examine the emerging opportunities this framework enables, encompassing potential benefits and representative use cases. A case study is conducted experimentally to validate the performance superiority of our framework in completing lane-change planning task. Finally, several future research directions to empower EI driving are identified to guide subsequent work.
Despite the recent advancements in NLP with the advent of Large Language Models (LLMs), Entity Linking (EL) for historical texts remains challenging due to linguistic variation, noisy inputs, and evolving semantic conventions. Existing solutions either require substantial training data or rely on domain-specific rules that limit scalability. In this paper, we present MHEL-LLaMo (Multilingual Historical Entity Linking with Large Language MOdels), an unsupervised ensemble approach combining a Small Language Model (SLM) and an LLM. MHEL-LLaMo leverages a multilingual bi-encoder (BELA) for candidate retrieval and an instruction-tuned LLM for NIL prediction and candidate selection via prompt chaining. Our system uses SLM's confidence scores to discriminate between easy and hard samples, applying an LLM only for hard cases. This strategy reduces computational costs while preventing hallucinations on straightforward cases. We evaluate MHEL-LLaMo on four established benchmarks in six European languages (English, Finnish, French, German, Italian and Swedish) from the 19th and 20th centuries. Results demonstrate that MHEL-LLaMo outperforms state-of-the-art models without requiring fine-tuning, offering a scalable solution for low-resource historical EL. The implementation of MHEL-LLaMo is available on Github.
Electro-laryngeal (EL) speech is characterized by constant pitch, limited prosody, and mechanical noise, reducing naturalness and intelligibility. We propose a lightweight adaptation of the state-of-the-art StreamVC framework to this setting by removing pitch and energy modules and combining self-supervised pretraining with supervised fine-tuning on parallel EL and healthy (HE) speech data, guided by perceptual and intelligibility losses. Objective and subjective evaluations across different loss configurations confirm their influence: the best model variant, based on WavLM features and human-feedback predictions (+WavLM+HF), drastically reduces character error rate (CER) of EL inputs, raises naturalness mean opinion score (nMOS) from 1.1 to 3.3, and consistently narrows the gap to HE ground-truth speech in all evaluated metrics. These findings demonstrate the feasibility of adapting lightweight voice conversion architectures to EL voice rehabilitation while also identifying prosody generation and intelligibility improvements as the main remaining bottlenecks.