This paper presents the first empirical demonstration of controllable locality in transformer language models, a novel architectural framework that enables continuous control over the degree of representation localization through a tunable locality dial parameter. Unlike traditional language models that rely exclusively on distributed representations, our approach allows dynamic interpolation between highly interpretable localist encodings and efficient distributed representations without requiring model retraining. We conducted experiments on the WikiText corpus using a two-layer transformer architecture, systematically varying the locality parameter {\lambda} across the full spectrum from 1.0 (fully localist) to 0.0 (fully distributed). Our results demonstrate that localist configurations achieve dramatically lower attention entropy, with {\lambda} = 1.0 yielding 5.36 bits compared to 7.18 bits at {\lambda} = 0.0, while maintaining substantially higher pointer fidelity scores reflecting stronger alignment with rule-specified targets. Prediction experiments reveal that intermediate locality values optimize the tradeoff between interpretability and performance, with {\lambda} = 0.6 achieving test perplexity of 4.65 and accuracy of 84.7%. These findings establish that localist language models provide a practical framework for applications in regulated domains requiring both transparency and capability, offering precise mathematical control over the interpretability-performance spectrum through explicit penalty thresholds and information-theoretic design principles.
Localisation tasks in biomedical data often require models to learn meaningful spatial or temporal relationships from signals with complex intensity distributions. A common strategy, exemplified by CoordConv layers, is to append coordinate channels to convolutional inputs, enabling networks to learn absolute positions. In this work, we propose a signal intensity-weighted coordinate representation that replaces the pure coordinate channels with channels scaled by local signal intensity. This modification embeds an intensity-position coupling directly in the input representation, introducing a simple and modality-agnostic inductive bias. We evaluate the approach on two distinct localisation problems: (i) predicting the time of morphological transition in 20-second, two-lead ECG signals, and (ii) regressing the coordinates of nuclear centres in cytological images from the SiPaKMeD dataset. In both cases, the proposed representation yields faster convergence and higher generalisation performance relative to conventional coordinate-channel approaches, demonstrating its effectiveness across both one-dimensional and two-dimensional biomedical signals.
When people pursue rewards in stochastic environments, they often match their choice frequencies to the observed target frequencies, even when this policy is demonstrably sub-optimal. We used a ``hide and seek'' task to evaluate this behavior under conditions where pursuit (seeking) could be toggled to avoidance (hiding), while leaving the probability distribution fixed, or varying complexity by changing the number of possible choices. We developed a model for participant choice built from choice frequency histograms treated as vectors. We posited the existence of a probability antimatching strategy for avoidance (hiding) rounds, and formalized this as a vector reflection of probability matching. We found that only two basis policies: matching/antimatching and maximizing/minimizing were sufficient to account for participant choices across a range of room numbers and opponent probability distributions. This schema requires only that people have the ability to remember the relative frequency of the different outcomes. With this knowledge simple operations can construct the maximizing and minimizing policies as well as matching and antimatching strategies. A mixture of these two policies captures human choice patterns in a stochastic environment.
Machine learning models typically assume that training and test data follow the same distribution, an assumption that often fails in real-world scenarios due to distribution shifts. This issue is especially pronounced in low-resource settings, where data scarcity and limited domain diversity hinder robust generalization. Domain generalization (DG) approaches address this challenge by learning features that remain invariant across domains, often using causal mechanisms to improve model robustness. In this study, we examine two distinct causal DG techniques in low-resource natural language tasks. First, we investigate a causal data augmentation (CDA) approach that automatically generates counterfactual examples to improve robustness to spurious correlations. We apply this method to sentiment classification on the NaijaSenti Twitter corpus, expanding the training data with semantically equivalent paraphrases to simulate controlled distribution shifts. Second, we explore an invariant causal representation learning (ICRL) approach using the DINER framework, originally proposed for debiasing aspect-based sentiment analysis. We adapt DINER to a multilingual setting. Our findings demonstrate that both approaches enhance robustness to unseen domains: counterfactual data augmentation yields consistent cross-domain accuracy gains in sentiment classification, while causal representation learning with DINER improves out-of-distribution performance in multilingual sentiment analysis, albeit with varying gains across languages.
Collaborative perception improves task performance by expanding the perception range through information sharing among agents. . Immutable heterogeneity poses a significant challenge in collaborative perception, as participating agents may employ different and fixed perception models. This leads to domain gaps in the intermediate features shared among agents, consequently degrading collaborative performance. Aligning the features of all agents to a common representation can eliminate domain gaps with low training cost. However, in existing methods, the common representation is designated as the representation of a specific agent, making it difficult for agents with significant domain discrepancies from this specific agent to achieve proper alignment. This paper proposes NegoCollab, a heterogeneous collaboration method based on the negotiated common representation. It introduces a negotiator during training to derive the common representation from the local representations of each modality's agent, effectively reducing the inherent domain gap with the various local representations. In NegoCollab, the mutual transformation of features between the local representation space and the common representation space is achieved by a pair of sender and receiver. To better align local representations to the common representation containing multimodal information, we introduce structural alignment loss and pragmatic alignment loss in addition to the distribution alignment loss to supervise the training. This enables the knowledge in the common representation to be fully distilled into the sender.
Since its introduction, 3D Gaussian Splatting (3DGS) has rapidly transformed the landscape of 3D scene representations, inspiring an extensive body of associated research. Follow-up work includes analyses and contributions that enhance the efficiency, scalability, and real-world applicability of 3DGS. In this summary, we present an overview of several key directions that have emerged in the wake of 3DGS. We highlight advances enabling resource-efficient training and rendering, the evolution toward dynamic (or four-dimensional, 4DGS) representations, and deeper exploration of the mathematical foundations underlying its appearance modeling and rendering process. Furthermore, we examine efforts to bring 3DGS to mobile and virtual reality platforms, its extension to massive-scale environments, and recent progress toward near-instant radiance field reconstruction via feed-forward or distributed computation. Collectively, these developments illustrate how 3DGS has evolved from a breakthrough representation into a versatile and foundational tool for 3D vision and graphics.
Multimodal large language models (MLLMs) exhibit a pronounced preference for textual inputs when processing vision-language data, limiting their ability to reason effectively from visual evidence. Unlike prior studies that attribute this text bias to external factors such as data imbalance or instruction tuning, we propose that the bias originates from the model's internal architecture. Specifically, we hypothesize that visual key vectors (Visual Keys) are out-of-distribution (OOD) relative to the text key space learned during language-only pretraining. Consequently, these visual keys receive systematically lower similarity scores during attention computation, leading to their under-utilization in the context representation. To validate this hypothesis, we extract key vectors from LLaVA and Qwen2.5-VL and analyze their distributional structures using qualitative (t-SNE) and quantitative (Jensen-Shannon divergence) methods. The results provide direct evidence that visual and textual keys occupy markedly distinct subspaces within the attention space. The inter-modal divergence is statistically significant, exceeding intra-modal variation by several orders of magnitude. These findings reveal that text bias arises from an intrinsic misalignment within the attention key space rather than solely from external data factors.
While investment funds publicly disclose their objectives in broad terms, their managers optimize for complex combinations of competing goals that go beyond simple risk-return trade-offs. Traditional approaches attempt to model this through multi-objective utility functions, but face fundamental challenges in specification and parameterization. We propose a generative framework that learns latent representations of fund manager strategies without requiring explicit utility specification. Our approach directly models the conditional probability of a fund's portfolio weights, given stock characteristics, historical returns, previous weights, and a latent variable representing the fund's strategy. Unlike methods based on reinforcement learning or imitation learning, which require specified rewards or labeled expert objectives, our GAN-based architecture learns directly from the joint distribution of observed holdings and market data. We validate our framework on a dataset of 1436 U.S. equity mutual funds. The learned representations successfully capture known investment styles, such as "growth" and "value," while also revealing implicit manager objectives. For instance, we find that while many funds exhibit characteristics of Markowitz-like optimization, they do so with heterogeneous realizations for turnover, concentration, and latent factors. To analyze and interpret the end-to-end model, we develop a series of tests that explain the model, and we show that the benchmark's expert labeling are contained in our model's encoding in a linear interpretable way. Our framework provides a data-driven approach for characterizing investment strategies for applications in market simulation, strategy attribution, and regulatory oversight.
Shortcuts, spurious rules that perform well during training but fail to generalize, present a major challenge to the reliability of deep networks (Geirhos et al., 2020). However, the impact of shortcuts on feature representations remains understudied, obstructing the design of principled shortcut-mitigation methods. To overcome this limitation, we investigate the layer-wise localization of shortcuts in deep models. Our novel experiment design quantifies the layer-wise contribution to accuracy degradation caused by a shortcut-inducing skew by counterfactual training on clean and skewed datasets. We employ our design to study shortcuts on CIFAR-10, Waterbirds, and CelebA datasets across VGG, ResNet, DeiT, and ConvNeXt architectures. We find that shortcut learning is not localized in specific layers but distributed throughout the network. Different network parts play different roles in this process: shallow layers predominantly encode spurious features, while deeper layers predominantly forget core features that are predictive on clean data. We also analyze the differences in localization and describe its principal axes of variation. Finally, our analysis of layer-wise shortcut-mitigation strategies suggests the hardness of designing general methods, supporting dataset- and architecture-specific approaches instead.
With increasing urban traffic complexity, Traffic Signal Control (TSC) is essential for optimizing traffic flow and improving road safety. Large Language Models (LLMs) emerge as promising approaches for TSC. However, they are prone to hallucinations in emergencies, leading to unreliable decisions that may cause substantial delays for emergency vehicles. Moreover, diverse intersection types present substantial challenges for traffic state encoding and cross-intersection training, limiting generalization across heterogeneous intersections. Therefore, this paper proposes Retrieval Augmented Generation (RAG)-enhanced distributed LLM agents with Emergency response for Generalizable TSC (REG-TSC). Firstly, this paper presents an emergency-aware reasoning framework, which dynamically adjusts reasoning depth based on the emergency scenario and is equipped with a novel Reviewer-based Emergency RAG (RERAG) to distill specific knowledge and guidance from historical cases, enhancing the reliability and rationality of agents' emergency decisions. Secondly, this paper designs a type-agnostic traffic representation and proposes a Reward-guided Reinforced Refinement (R3) for heterogeneous intersections. R3 adaptively samples training experience from diverse intersections with environment feedback-based priority and fine-tunes LLM agents with a designed reward-weighted likelihood loss, guiding REG-TSC toward high-reward policies across heterogeneous intersections. On three real-world road networks with 17 to 177 heterogeneous intersections, extensive experiments show that REG-TSC reduces travel time by 42.00%, queue length by 62.31%, and emergency vehicle waiting time by 83.16%, outperforming other state-of-the-art methods.