Alert button
Picture for Zoë Holmes

Zoë Holmes

Alert button

A Review of Barren Plateaus in Variational Quantum Computing

Add code
Bookmark button
Alert button
May 01, 2024
Martin Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J. Coles, Lukasz Cincio, Jarrod R. McClean, Zoë Holmes, M. Cerezo

Viaarxiv icon

Variational quantum simulation: a case study for understanding warm starts

Add code
Bookmark button
Alert button
Apr 15, 2024
Ricard Puig i Valls, Marc Drudis, Supanut Thanasilp, Zoë Holmes

Viaarxiv icon

On fundamental aspects of quantum extreme learning machines

Add code
Bookmark button
Alert button
Dec 23, 2023
Weijie Xiong, Giorgio Facelli, Mehrad Sahebi, Owen Agnel, Thiparat Chotibut, Supanut Thanasilp, Zoë Holmes

Viaarxiv icon

Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing

Add code
Bookmark button
Alert button
Dec 14, 2023
M. Cerezo, Martin Larocca, Diego García-Martín, N. L. Diaz, Paolo Braccia, Enrico Fontana, Manuel S. Rudolph, Pablo Bermejo, Aroosa Ijaz, Supanut Thanasilp, Eric R. Anschuetz, Zoë Holmes

Viaarxiv icon

Trainability barriers and opportunities in quantum generative modeling

Add code
Bookmark button
Alert button
May 04, 2023
Manuel S. Rudolph, Sacha Lerch, Supanut Thanasilp, Oriel Kiss, Sofia Vallecorsa, Michele Grossi, Zoë Holmes

Figure 1 for Trainability barriers and opportunities in quantum generative modeling
Figure 2 for Trainability barriers and opportunities in quantum generative modeling
Figure 3 for Trainability barriers and opportunities in quantum generative modeling
Figure 4 for Trainability barriers and opportunities in quantum generative modeling
Viaarxiv icon

The power and limitations of learning quantum dynamics incoherently

Add code
Bookmark button
Alert button
Mar 22, 2023
Sofiene Jerbi, Joe Gibbs, Manuel S. Rudolph, Matthias C. Caro, Patrick J. Coles, Hsin-Yuan Huang, Zoë Holmes

Figure 1 for The power and limitations of learning quantum dynamics incoherently
Figure 2 for The power and limitations of learning quantum dynamics incoherently
Figure 3 for The power and limitations of learning quantum dynamics incoherently
Figure 4 for The power and limitations of learning quantum dynamics incoherently
Viaarxiv icon

Exponential concentration and untrainability in quantum kernel methods

Add code
Bookmark button
Alert button
Aug 23, 2022
Supanut Thanasilp, Samson Wang, M. Cerezo, Zoë Holmes

Figure 1 for Exponential concentration and untrainability in quantum kernel methods
Figure 2 for Exponential concentration and untrainability in quantum kernel methods
Figure 3 for Exponential concentration and untrainability in quantum kernel methods
Figure 4 for Exponential concentration and untrainability in quantum kernel methods
Viaarxiv icon

Dynamical simulation via quantum machine learning with provable generalization

Add code
Bookmark button
Alert button
Apr 21, 2022
Joe Gibbs, Zoë Holmes, Matthias C. Caro, Nicholas Ezzell, Hsin-Yuan Huang, Lukasz Cincio, Andrew T. Sornborger, Patrick J. Coles

Figure 1 for Dynamical simulation via quantum machine learning with provable generalization
Figure 2 for Dynamical simulation via quantum machine learning with provable generalization
Figure 3 for Dynamical simulation via quantum machine learning with provable generalization
Viaarxiv icon

Out-of-distribution generalization for learning quantum dynamics

Add code
Bookmark button
Alert button
Apr 21, 2022
Matthias C. Caro, Hsin-Yuan Huang, Nicholas Ezzell, Joe Gibbs, Andrew T. Sornborger, Lukasz Cincio, Patrick J. Coles, Zoë Holmes

Figure 1 for Out-of-distribution generalization for learning quantum dynamics
Figure 2 for Out-of-distribution generalization for learning quantum dynamics
Figure 3 for Out-of-distribution generalization for learning quantum dynamics
Figure 4 for Out-of-distribution generalization for learning quantum dynamics
Viaarxiv icon

The quantum low-rank approximation problem

Add code
Bookmark button
Alert button
Apr 01, 2022
Nic Ezzell, Zoë Holmes, Patrick J. Coles

Figure 1 for The quantum low-rank approximation problem
Viaarxiv icon