Abstract:Generating novel and functional protein sequences is critical to a wide range of applications in biology. Recent advancements in conditional diffusion models have shown impressive empirical performance in protein generation tasks. However, reliable generations of protein remain an open research question in de novo protein design, especially when it comes to conditional diffusion models. Considering the biological function of a protein is determined by multi-level structures, we propose a novel multi-level conditional diffusion model that integrates both sequence-based and structure-based information for efficient end-to-end protein design guided by specified functions. By generating representations at different levels simultaneously, our framework can effectively model the inherent hierarchical relations between different levels, resulting in an informative and discriminative representation of the generated protein. We also propose a Protein-MMD, a new reliable evaluation metric, to evaluate the quality of generated protein with conditional diffusion models. Our new metric is able to capture both distributional and functional similarities between real and generated protein sequences while ensuring conditional consistency. We experiment with the benchmark datasets, and the results on conditional protein generation tasks demonstrate the efficacy of the proposed generation framework and evaluation metric.
Abstract:Distributed backdoor attacks (DBA) have shown a higher attack success rate than centralized attacks in centralized federated learning (FL). However, it has not been investigated in the decentralized FL. In this paper, we experimentally demonstrate that, while directly applying DBA to decentralized FL, the attack success rate depends on the distribution of attackers in the network architecture. Considering that the attackers can not decide their location, this paper aims to achieve a high attack success rate regardless of the attackers' location distribution. Specifically, we first design a method to detect the network by predicting the distance between any two attackers on the network. Then, based on the distance, we organize the attackers in different clusters. Lastly, we propose an algorithm to \textit{dynamically} embed local patterns decomposed from a global pattern into the different attackers in each cluster. We conduct a thorough empirical investigation and find that our method can, in benchmark datasets, outperform both centralized attacks and naive DBA in different decentralized frameworks.