Abstract:Large language models (LLMs) rely on self-attention for contextual understanding, demanding high-throughput inference and large-scale token parallelism (LTPP). Existing dynamic sparsity accelerators falter under LTPP scenarios due to stage-isolated optimizations. Revisiting the end-to-end sparsity acceleration flow, we identify an overlooked opportunity: cross-stage coordination can substantially reduce redundant computation and memory access. We propose STAR, a cross-stage compute- and memory-efficient algorithm-hardware co-design tailored for Transformer inference under LTPP. STAR introduces a leading-zero-based sparsity prediction using log-domain add-only operations to minimize prediction overhead. It further employs distributed sorting and a sorted updating FlashAttention mechanism, guided by a coordinated tiling strategy that enables fine-grained stage interaction for improved memory efficiency and latency. These optimizations are supported by a dedicated STAR accelerator architecture, achieving up to 9.2$\times$ speedup and 71.2$\times$ energy efficiency over A100, and surpassing SOTA accelerators by up to 16.1$\times$ energy and 27.1$\times$ area efficiency gains. Further, we deploy STAR onto a multi-core spatial architecture, optimizing dataflow and execution orchestration for ultra-long sequence processing. Architectural evaluation shows that, compared to the baseline design, Spatial-STAR achieves a 20.1$\times$ throughput improvement.
Abstract:Attention-based models have revolutionized AI, but the quadratic cost of self-attention incurs severe computational and memory overhead. Sparse attention methods alleviate this by skipping low-relevance token pairs. However, current approaches lack practicality due to the heavy expense of added sparsity predictor, which severely drops their hardware efficiency. This paper advances the state-of-the-art (SOTA) by proposing a bit-serial enable stage-fusion (BSF) mechanism, which eliminates the need for a separate predictor. However, it faces key challenges: 1) Inaccurate bit-sliced sparsity speculation leads to incorrect pruning; 2) Hardware under-utilization due to fine-grained and imbalanced bit-level workloads. 3) Tiling difficulty caused by the row-wise dependency in sparsity pruning criteria. We propose PADE, a predictor-free algorithm-hardware co-design for dynamic sparse attention acceleration. PADE features three key innovations: 1) Bit-wise uncertainty interval-enabled guard filtering (BUI-GF) strategy to accurately identify trivial tokens during each bit round; 2) Bidirectional sparsity-based out-of-order execution (BS-OOE) to improve hardware utilization; 3) Interleaving-based sparsity-tiled attention (ISTA) to reduce both I/O and computational complexity. These techniques, combined with custom accelerator designs, enable practical sparsity acceleration without relying on an added sparsity predictor. Extensive experiments on 22 benchmarks show that PADE achieves 7.43x speed up and 31.1x higher energy efficiency than Nvidia H100 GPU. Compared to SOTA accelerators, PADE achieves 5.1x, 4.3x and 3.4x energy saving than Sanger, DOTA and SOFA.
Abstract:Training large language models (LLMs) imposes extreme demands on computation, memory capacity, and interconnect bandwidth, driven by their ever-increasing parameter scales and intensive data movement. Wafer-scale integration offers a promising solution by densely integrating multiple single-die chips with high-speed die-to-die (D2D) interconnects. However, the limited wafer area necessitates trade-offs among compute, memory, and communication resources. Fully harnessing the potential of wafer-scale integration while mitigating its architectural constraints is essential for maximizing LLM training performance. This imposes significant challenges for the co-optimization of architecture and training strategies. Unfortunately, existing approaches all fall short in addressing these challenges. To bridge the gap, we propose WATOS, a co-exploration framework for LLM training strategy and wafer-scale architecture. We first define a highly configurable hardware template designed to explore optimal architectural parameters for wafer-scale chips. Based on it, we capitalize on the high D2D bandwidth and fine-grained operation advantages inherent to wafer-scale chips to explore optimal parallelism and resource allocation strategies, effectively addressing the memory underutilization issues during LLM training. Compared to the state-of-the-art (SOTA) LLM training framework Megatron and Cerebras' weight streaming wafer training strategy, WATOS can achieve an average overall throughput improvement of 2.74x and 1.53x across various LLM models, respectively. In addition, we leverage WATOS to reveal intriguing insights about wafer-scale architecture design with the training of LLM workloads.
Abstract:The rapid progress of multi-modal large language models (MLLMs) has boosted the task of image quality assessment (IQA). However, a key challenge arises from the inherent mismatch between the discrete token outputs of MLLMs and the continuous nature of quality scores required by IQA tasks. This discrepancy significantly hinders the performance of MLLM-based IQA methods. Previous approaches that convert discrete token predictions into continuous scores often suffer from conversion errors. Moreover, the semantic confusion introduced by level tokens (e.g., ``good'') further constrains the performance of MLLMs on IQA tasks and degrades their original capabilities for related tasks. To tackle these problems, we provide a theoretical analysis of the errors inherent in previous approaches and, motivated by this analysis, propose a simple yet effective framework, Q-Scorer. This framework incorporates a lightweight regression module and IQA-specific score tokens into the MLLM pipeline. Extensive experiments demonstrate that Q-Scorer achieves state-of-the-art performance across multiple IQA benchmarks, generalizes well to mixed datasets, and further improves when combined with other methods.
Abstract:This paper reports on the NTIRE 2025 challenge on Text to Image (T2I) generation model quality assessment, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. The aim of this challenge is to address the fine-grained quality assessment of text-to-image generation models. This challenge evaluates text-to-image models from two aspects: image-text alignment and image structural distortion detection, and is divided into the alignment track and the structural track. The alignment track uses the EvalMuse-40K, which contains around 40K AI-Generated Images (AIGIs) generated by 20 popular generative models. The alignment track has a total of 371 registered participants. A total of 1,883 submissions are received in the development phase, and 507 submissions are received in the test phase. Finally, 12 participating teams submitted their models and fact sheets. The structure track uses the EvalMuse-Structure, which contains 10,000 AI-Generated Images (AIGIs) with corresponding structural distortion mask. A total of 211 participants have registered in the structure track. A total of 1155 submissions are received in the development phase, and 487 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Almost all methods have achieved better results than baseline methods, and the winning methods in both tracks have demonstrated superior prediction performance on T2I model quality assessment.
Abstract:With the rapid development of generative technologies, AI-Generated Images (AIGIs) have been widely applied in various aspects of daily life. However, due to the immaturity of the technology, the quality of the generated images varies, so it is important to develop quality assessment techniques for the generated images. Although some models have been proposed to assess the quality of generated images, they are inadequate when faced with the ever-increasing and diverse categories of generated images. Consequently, the development of more advanced and effective models for evaluating the quality of generated images is urgently needed. Recent research has explored the significant potential of the visual language model CLIP in image quality assessment, finding that it performs well in evaluating the quality of natural images. However, its application to generated images has not been thoroughly investigated. In this paper, we build on this idea and further explore the potential of CLIP in evaluating the quality of generated images. We design CLIP-AGIQA, a CLIP-based regression model for quality assessment of generated images, leveraging rich visual and textual knowledge encapsulated in CLIP. Particularly, we implement multi-category learnable prompts to fully utilize the textual knowledge in CLIP for quality assessment. Extensive experiments on several generated image quality assessment benchmarks, including AGIQA-3K and AIGCIQA2023, demonstrate that CLIP-AGIQA outperforms existing IQA models, achieving excellent results in evaluating the quality of generated images.