Abstract:This paper reports on the NTIRE 2025 challenge on Text to Image (T2I) generation model quality assessment, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. The aim of this challenge is to address the fine-grained quality assessment of text-to-image generation models. This challenge evaluates text-to-image models from two aspects: image-text alignment and image structural distortion detection, and is divided into the alignment track and the structural track. The alignment track uses the EvalMuse-40K, which contains around 40K AI-Generated Images (AIGIs) generated by 20 popular generative models. The alignment track has a total of 371 registered participants. A total of 1,883 submissions are received in the development phase, and 507 submissions are received in the test phase. Finally, 12 participating teams submitted their models and fact sheets. The structure track uses the EvalMuse-Structure, which contains 10,000 AI-Generated Images (AIGIs) with corresponding structural distortion mask. A total of 211 participants have registered in the structure track. A total of 1155 submissions are received in the development phase, and 487 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Almost all methods have achieved better results than baseline methods, and the winning methods in both tracks have demonstrated superior prediction performance on T2I model quality assessment.
Abstract:With the rapid development of generative technologies, AI-Generated Images (AIGIs) have been widely applied in various aspects of daily life. However, due to the immaturity of the technology, the quality of the generated images varies, so it is important to develop quality assessment techniques for the generated images. Although some models have been proposed to assess the quality of generated images, they are inadequate when faced with the ever-increasing and diverse categories of generated images. Consequently, the development of more advanced and effective models for evaluating the quality of generated images is urgently needed. Recent research has explored the significant potential of the visual language model CLIP in image quality assessment, finding that it performs well in evaluating the quality of natural images. However, its application to generated images has not been thoroughly investigated. In this paper, we build on this idea and further explore the potential of CLIP in evaluating the quality of generated images. We design CLIP-AGIQA, a CLIP-based regression model for quality assessment of generated images, leveraging rich visual and textual knowledge encapsulated in CLIP. Particularly, we implement multi-category learnable prompts to fully utilize the textual knowledge in CLIP for quality assessment. Extensive experiments on several generated image quality assessment benchmarks, including AGIQA-3K and AIGCIQA2023, demonstrate that CLIP-AGIQA outperforms existing IQA models, achieving excellent results in evaluating the quality of generated images.