Abstract:Vision-language pre-trained models (VLMs) such as CLIP have demonstrated remarkable zero-shot generalization, and prompt learning has emerged as an efficient alternative to full fine-tuning. However, existing methods often struggle with generalization to novel classes, a phenomenon attributed to overfitting on seen classes and forgetting general knowledge. Furthermore, recent approaches that improve generalization often introduce complex architectures or heavy computational overhead. In this paper, we propose a Multiple Semantic-Guided Context Optimization (MSGCoOp) framework to enhance few-shot generalization while maintaining computational efficiency. Our approach leverages an ensemble of parallel learnable context vectors to capture diverse semantic aspects. To enrich these prompts, we introduce a semantic guidance mechanism that aligns them with comprehensive class descriptions automatically generated by a Large Language Model (LLM). Furthermore, a diversity regularization loss encourages the prompts to learn complementary and orthogonal features, preventing them from collapsing into redundant representations. Extensive experiments on 11 benchmark datasets show that MSGCoOp significantly improves performance on base-to-novel generalization, achieving an average harmonic mean improvement of 1.10\% over the strong KgCoOp baseline. Our method also demonstrates enhanced robustness in cross-domain generalization tasks. Our code is avaliable at: \href{https://github.com/Rain-Bus/MSGCoOp}{https://github.com/Rain-Bus/MSGCoOp}.
Abstract:Recovering photorealistic and drivable full-body avatars is crucial for numerous applications, including virtual reality, 3D games, and tele-presence. Most methods, whether reconstruction or generation, require large numbers of human motion sequences and corresponding textured meshes. To easily learn a drivable avatar, a reasonable parametric body model with unified topology is paramount. However, existing human body datasets either have images or textured models and lack parametric models which fit clothes well. We propose a new parametric model SMPLX-Lite-D, which can fit detailed geometry of the scanned mesh while maintaining stable geometry in the face, hand and foot regions. We present SMPLX-Lite dataset, the most comprehensive clothing avatar dataset with multi-view RGB sequences, keypoints annotations, textured scanned meshes, and textured SMPLX-Lite-D models. With the SMPLX-Lite dataset, we train a conditional variational autoencoder model that takes human pose and facial keypoints as input, and generates a photorealistic drivable human avatar.
Abstract:We present SplattingAvatar, a hybrid 3D representation of photorealistic human avatars with Gaussian Splatting embedded on a triangle mesh, which renders over 300 FPS on a modern GPU and 30 FPS on a mobile device. We disentangle the motion and appearance of a virtual human with explicit mesh geometry and implicit appearance modeling with Gaussian Splatting. The Gaussians are defined by barycentric coordinates and displacement on a triangle mesh as Phong surfaces. We extend lifted optimization to simultaneously optimize the parameters of the Gaussians while walking on the triangle mesh. SplattingAvatar is a hybrid representation of virtual humans where the mesh represents low-frequency motion and surface deformation, while the Gaussians take over the high-frequency geometry and detailed appearance. Unlike existing deformation methods that rely on an MLP-based linear blend skinning (LBS) field for motion, we control the rotation and translation of the Gaussians directly by mesh, which empowers its compatibility with various animation techniques, e.g., skeletal animation, blend shapes, and mesh editing. Trainable from monocular videos for both full-body and head avatars, SplattingAvatar shows state-of-the-art rendering quality across multiple datasets.