Beijing Institute of Technolegy, Zhongguancun Academy
Abstract:Reinforcement Learning from Human Feedback (RLHF) and its variants have emerged as the dominant approaches for aligning Large Language Models with human intent. While empirically effective, the theoretical generalization properties of these methods in high-dimensional settings remain to be explored. To this end, we build the generalization theory on RLHF of LLMs under the linear reward model, through the framework of algorithmic stability. In contrast to the existing works built upon the consistency of maximum likelihood estimations on reward model, our analysis is presented under an end-to-end learning framework, which is consistent with practice. Concretely, we prove that under a key \textbf{feature coverage} condition, the empirical optima of policy model have a generalization bound of order $\mathcal{O}(n^{-\frac{1}{2}})$. Moreover, the results can be extrapolated to parameters obtained by gradient-based learning algorithms, i.e., Gradient Ascent (GA) and Stochastic Gradient Ascent (SGA). Thus, we argue that our results provide new theoretical evidence for the empirically observed generalization of LLMs after RLHF.
Abstract:The exploration-exploitation (EE) trade-off is a central challenge in reinforcement learning (RL) for large language models (LLMs). With Group Relative Policy Optimization (GRPO), training tends to be exploitation driven: entropy decreases monotonically, samples convergence, and exploration fades. Most existing fixes are \textbf{sample-centric}: they seek or bonus rare samples, assuming exploration comes from novel trajectories and tokens. These heuristics depend on the "luck" of informative samples, lack principled control of the policy, and often yield limited or inconsistent gains. In this work, we are the first to introduce a \textbf{distribution-centric} perspective for RL, in which exploration is always guided by a "better" target distribution, and reveal that a policy's ability to resist entropy collapse is governed by the distribution itself rather than individual samples. Building on this insight, we propose Distribution-Centric Policy Optimization (DCPO), which reformulates entropy regulation as distribution-level regularization. DCPO achieves controllable entropy fully on-policy without sampling from external distributions, enabling efficient exploration while maintaining training stability. Across multiple models and seven benchmarks, DCPO improves over GRPO by about 20\% on average. Overall, DCPO replaces sample-level heuristics with distribution-level principles, offering a theoretically grounded and flexible framework for controllable exploration and a stronger EE trade-off. The code is available in https://github.com/597358816/DCPO.