Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities across various applications, but their performance on long-context tasks is often limited by the computational complexity of attention mechanisms. This paper introduces a novel approach to accelerate attention computation in LLMs, particularly for long-context scenarios. We leverage the inherent sparsity within attention mechanisms, both in conventional Softmax attention and ReLU attention (with $\mathsf{ReLU}^\alpha$ activation, $\alpha \in \mathbb{N}_+$), to significantly reduce the running time complexity. Our method employs a Half-Space Reporting (HSR) data structure to rapidly identify non-zero or "massively activated" entries in the attention matrix. We present theoretical analyses for two key scenarios: attention generation and full attention computation with long input context. Our approach achieves a running time of $O(mn^{4/5})$ significantly faster than the naive approach $O(mn)$ for attention generation, where $n$ is the context length, $m$ is the query length, and $d$ is the hidden dimension. We can also reduce the running time of full attention computation from $O(mn)$ to $O(mn^{1 - 1 / \lfloor d/2\rfloor} + mn^{4/5})$. Importantly, our method introduces no error for ReLU attention and only provably negligible error for Softmax attention, where the latter is supported by our empirical validation. This work represents a significant step towards enabling efficient long-context processing in LLMs, potentially broadening their applicability across various domains.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in processing long-context information. However, the quadratic complexity of attention computation with respect to sequence length poses significant computational challenges, and I/O aware algorithms have been proposed. This paper presents a comprehensive analysis of the I/O complexity for attention mechanisms, focusing on backward passes by categorizing into small and large cache scenarios. Using the red-blue pebble game framework, we establish tight bounds on I/O complexity across all cache sizes. We confirm that the de facto standard I/O aware algorithm FlashAttention is optimal for both forward and backward passes for the large cache size scenario. For small cache sizes, we provide an algorithm that improves over existing methods and achieves the tight bounds. Additionally, we extend our analysis to sparse attention, a mainstream speeding-up approach, deriving fine-grained lower bounds for both forward and backward passes and both small and large caches. Our findings complete the theoretical foundation for I/O complexity in attention mechanisms, offering insights for designing efficient algorithms of LLM training and inference.
Abstract:Previous work has demonstrated that attention mechanisms are Turing complete. More recently, it has been shown that a looped 13-layer Transformer can function as a universal programmable computer. In contrast, the multi-layer perceptrons with $\mathsf{ReLU}$ activation ($\mathsf{ReLU}$-$\mathsf{MLP}$), one of the most fundamental components of neural networks, is known to be expressive; specifically, a two-layer neural network is a universal approximator given an exponentially large number of hidden neurons. However, it remains unclear whether a $\mathsf{ReLU}$-$\mathsf{MLP}$ can be made into a universal programmable computer using a practical number of weights. In this work, we provide an affirmative answer that a looped 23-layer $\mathsf{ReLU}$-$\mathsf{MLP}$ is capable to perform the basic necessary operations, effectively functioning as a programmable computer. This indicates that simple modules have stronger expressive power than previously expected and have not been fully explored. Our work provides insights into the mechanisms of neural networks and demonstrates that complex tasks, such as functioning as a programmable computer, do not necessarily require advanced architectures like Transformers.
Abstract:We consider the problem of sampling from a $d$-dimensional log-concave distribution $\pi(\theta) \propto \exp(-f(\theta))$ for $L$-Lipschitz $f$, constrained to a convex body with an efficiently computable self-concordant barrier function, contained in a ball of radius $R$ with a $w$-warm start. We propose a \emph{robust} sampling framework that computes spectral approximations to the Hessian of the barrier functions in each iteration. We prove that for polytopes that are described by $n$ hyperplanes, sampling with the Lee-Sidford barrier function mixes within $\widetilde O((d^2+dL^2R^2)\log(w/\delta))$ steps with a per step cost of $\widetilde O(nd^{\omega-1})$, where $\omega\approx 2.37$ is the fast matrix multiplication exponent. Compared to the prior work of Mangoubi and Vishnoi, our approach gives faster mixing time as we are able to design a generalized soft-threshold Dikin walk beyond log-barrier. We further extend our result to show how to sample from a $d$-dimensional spectrahedron, the constrained set of a semidefinite program, specified by the set $\{x\in \mathbb{R}^d: \sum_{i=1}^d x_i A_i \succeq C \}$ where $A_1,\ldots,A_d, C$ are $n\times n$ real symmetric matrices. We design a walk that mixes in $\widetilde O((nd+dL^2R^2)\log(w/\delta))$ steps with a per iteration cost of $\widetilde O(n^\omega+n^2d^{3\omega-5})$. We improve the mixing time bound of prior best Dikin walk due to Narayanan and Rakhlin that mixes in $\widetilde O((n^2d^3+n^2dL^2R^2)\log(w/\delta))$ steps.
Abstract:We introduce a refined differentially private (DP) data structure for kernel density estimation (KDE), offering not only improved privacy-utility tradeoff but also better efficiency over prior results. Specifically, we study the mathematical problem: given a similarity function $f$ (or DP KDE) and a private dataset $X \subset \mathbb{R}^d$, our goal is to preprocess $X$ so that for any query $y\in\mathbb{R}^d$, we approximate $\sum_{x \in X} f(x, y)$ in a differentially private fashion. The best previous algorithm for $f(x,y) =\| x - y \|_1$ is the node-contaminated balanced binary tree by [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. Their algorithm requires $O(nd)$ space and time for preprocessing with $n=|X|$. For any query point, the query time is $d \log n$, with an error guarantee of $(1+\alpha)$-approximation and $\epsilon^{-1} \alpha^{-0.5} d^{1.5} R \log^{1.5} n$. In this paper, we improve the best previous result [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024] in three aspects: - We reduce query time by a factor of $\alpha^{-1} \log n$. - We improve the approximation ratio from $\alpha$ to 1. - We reduce the error dependence by a factor of $\alpha^{-0.5}$. From a technical perspective, our method of constructing the search tree differs from previous work [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. In prior work, for each query, the answer is split into $\alpha^{-1} \log n$ numbers, each derived from the summation of $\log n$ values in interval tree countings. In contrast, we construct the tree differently, splitting the answer into $\log n$ numbers, where each is a smart combination of two distance values, two counting values, and $y$ itself. We believe our tree structure may be of independent interest.
Abstract:The quadratic computational complexity in the self-attention mechanism of popular transformer architectures poses significant challenges for training and inference, particularly in terms of efficiency and memory requirements. Towards addressing these challenges, this paper introduces a novel fast computation method for gradient calculation in multi-layer transformer models. Our approach enables the computation of gradients for the entire multi-layer transformer model in almost linear time $n^{1+o(1)}$, where $n$ is the input sequence length. This breakthrough significantly reduces the computational bottleneck associated with the traditional quadratic time complexity. Our theory holds for any loss function and maintains a bounded approximation error across the entire model. Furthermore, our analysis can hold when the multi-layer transformer model contains many practical sub-modules, such as residual connection, casual mask, and multi-head attention. By improving the efficiency of gradient computation in large language models, we hope that our work will facilitate the more effective training and deployment of long-context language models based on our theoretical results.
Abstract:In this work, we improved the analysis of the running time of SparseGPT [Frantar, Alistarh ICML 2023] from $O(d^{3})$ to $O(d^{\omega} + d^{2+a+o(1)} + d^{1+\omega(1,1,a)-a})$ for any $a \in [0, 1]$, where $\omega$ is the exponent of matrix multiplication. In particular, for the current $\omega \approx 2.371$ [Alman, Duan, Williams, Xu, Xu, Zhou 2024], our running times boil down to $O(d^{2.53})$. This running time is due to the analysis of the lazy update behavior in iterative maintenance problems, such as [Deng, Song, Weinstein 2022, Brand, Song, Zhou ICML 2024].
Abstract:Leverage scores have become essential in statistics and machine learning, aiding regression analysis, randomized matrix computations, and various other tasks. This paper delves into the inverse problem, aiming to recover the intrinsic model parameters given the leverage scores gradient. This endeavor not only enriches the theoretical understanding of models trained with leverage score techniques but also has substantial implications for data privacy and adversarial security. We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$. An innovative iterative algorithm is introduced for the approximate resolution of the regularized least squares problem stated as $\min_{x \in \mathbb{R}^d} 0.5 \|g(x) - c\|_2^2 + 0.5\|\mathrm{diag}(w)Ax\|_2^2$. Our algorithm employs subsampled leverage score distributions to compute an approximate Hessian in each iteration, under standard assumptions, considerably mitigating the time complexity. Given that a total of $T = \log(\| x_0 - x^* \|_2/ \epsilon)$ iterations are required, the cost per iteration is optimized to the order of $O( (\mathrm{nnz}(A) + d^{\omega} ) \cdot \mathrm{poly}(\log(n/\delta))$, where $\mathrm{nnz}(A)$ denotes the number of non-zero entries of $A$.
Abstract:Determining the John ellipsoid - the largest volume ellipsoid contained within a convex polytope - is a fundamental problem with applications in machine learning, optimization, and data analytics. Recent work has developed fast algorithms for approximating the John ellipsoid using sketching and leverage score sampling techniques. However, these algorithms do not provide privacy guarantees for sensitive input data. In this paper, we present the first differentially private algorithm for fast John ellipsoid computation. Our method integrates noise perturbation with sketching and leverage score sampling to achieve both efficiency and privacy. We prove that (1) our algorithm provides $(\epsilon,\delta)$-differential privacy, and the privacy guarantee holds for neighboring datasets that are $\epsilon_0$-close, allowing flexibility in the privacy definition; (2) our algorithm still converges to a $(1+\xi)$-approximation of the optimal John ellipsoid in $O(\xi^{-2}(\log(n/\delta_0) + (L\epsilon_0)^{-2}))$ iterations where $n$ is the number of data point, $L$ is the Lipschitz constant, $\delta_0$ is the failure probability, and $\epsilon_0$ is the closeness of neighboring input datasets. Our theoretical analysis demonstrates the algorithm's convergence and privacy properties, providing a robust approach for balancing utility and privacy in John ellipsoid computation. This is the first differentially private algorithm for fast John ellipsoid computation, opening avenues for future research in privacy-preserving optimization techniques.
Abstract:Cross-attention has become a fundamental module nowadays in many important artificial intelligence applications, e.g., retrieval-augmented generation (RAG), system prompt, guided stable diffusion, and many so on. Ensuring cross-attention privacy is crucial and urgently needed because its key and value matrices may contain sensitive information about companies and their users, many of which profit solely from their system prompts or RAG data. In this work, we design a novel differential privacy (DP) data structure to address the privacy security of cross-attention with a theoretical guarantee. In detail, let $n$ be the input token length of system prompt/RAG data, $d$ be the feature dimension, $0 < \alpha \le 1$ be the relative error parameter, $R$ be the maximum value of the query and key matrices, $R_w$ be the maximum value of the value matrix, and $r,s,\epsilon_s$ be parameters of polynomial kernel methods. Then, our data structure requires $\widetilde{O}(ndr^2)$ memory consumption with $\widetilde{O}(nr^2)$ initialization time complexity and $\widetilde{O}(\alpha^{-1} r^2)$ query time complexity for a single token query. In addition, our data structure can guarantee that the user query is $(\epsilon, \delta)$-DP with $\widetilde{O}(n^{-1} \epsilon^{-1} \alpha^{-1/2} R^{2s} R_w r^2)$ additive error and $n^{-1} (\alpha + \epsilon_s)$ relative error between our output and the true answer. Furthermore, our result is robust to adaptive queries in which users can intentionally attack the cross-attention system. To our knowledge, this is the first work to provide DP for cross-attention. We believe it can inspire more privacy algorithm design in large generative models (LGMs).