Abstract:Local feature detection and description play an important role in many computer vision tasks, which are designed to detect and describe keypoints in "any scene" and "any downstream task". Data-driven local feature learning methods need to rely on pixel-level correspondence for training, which is challenging to acquire at scale, thus hindering further improvements in performance. In this paper, we propose SAMFeat to introduce SAM (segment anything model), a fundamental model trained on 11 million images, as a teacher to guide local feature learning and thus inspire higher performance on limited datasets. To do so, first, we construct an auxiliary task of Pixel Semantic Relational Distillation (PSRD), which distillates feature relations with category-agnostic semantic information learned by the SAM encoder into a local feature learning network, to improve local feature description using semantic discrimination. Second, we develop a technique called Weakly Supervised Contrastive Learning Based on Semantic Grouping (WSC), which utilizes semantic groupings derived from SAM as weakly supervised signals, to optimize the metric space of local descriptors. Third, we design an Edge Attention Guidance (EAG) to further improve the accuracy of local feature detection and description by prompting the network to pay more attention to the edge region guided by SAM. SAMFeat's performance on various tasks such as image matching on HPatches, and long-term visual localization on Aachen Day-Night showcases its superiority over previous local features. The release code is available at https://github.com/vignywang/SAMFeat.
Abstract:A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
Abstract:Unobserved confounding is a fundamental obstacle to establishing valid causal conclusions from observational data. Two complementary types of approaches have been developed to address this obstacle. An extensive line of work is based on taking advantage of fortuitous external aids (such as the presence of an instrumental variable or other proxy), along with additional assumptions to ensure identification. A recent line of work of proximal causal inference (Miao et al., 2018a) has aimed to provide a novel approach to using proxies to deal with unobserved confounding without relying on stringent parametric assumptions. On the other hand, a complete characterization of identifiability of a large class of causal parameters in arbitrary causal models with hidden variables has been developed using the language of graphical models, resulting in the ID algorithm and related extensions (Tian and Pearl, 2002; Shpitser and Pearl, 2006a,b). Celebrated special cases of this approach, such as the front-door model, are able to obtain non-parametric identification in seemingly counter-intuitive situations when a treatment and an outcome share an arbitrarily complicated unobserved common cause. In this paper we aim to develop a synthesis of the proximal and graphical approaches to identification in causal inference to yield the most general identification algorithm in multi- variate systems currently known - the proximal ID algorithm. In addition to being able to obtain non-parametric identification in all cases where the ID algorithm succeeds, our approach allows us to systematically exploit proxies to adjust for the presence of unobserved confounders that would have otherwise prevented identification. In addition, we outline a class of estimation strategies for causal parameters identified by our method in an important special case. We illustration our approach by simulation studies.
Abstract:Machine learning models that offer excellent predictive performance often lack the interpretability necessary to support integrated human machine decision-making. In clinical medicine and other high-risk settings, domain experts may be unwilling to trust model predictions without explanations. Work in explainable AI must balance competing objectives along two different axes: 1) Explanations must balance faithfulness to the model's decision-making with their plausibility to a domain expert. 2) Domain experts desire local explanations of individual predictions and global explanations of behavior in aggregate. We propose to train a proxy model that mimics the behavior of the trained model and provides fine-grained control over these trade-offs. We evaluate our approach on the task of assigning ICD codes to clinical notes to demonstrate that explanations from the proxy model are faithful and replicate the trained model behavior.
Abstract:Drawing causal conclusions from observational data requires making assumptions about the true data-generating process. Causal inference research typically considers low-dimensional data, such as categorical or numerical fields in structured medical records. High-dimensional and unstructured data such as natural language complicates the evaluation of causal inference methods; such evaluations rely on synthetic datasets with known causal effects. Models for natural language generation have been widely studied and perform well empirically. However, existing methods not immediately applicable to producing synthetic datasets for causal evaluations, as they do not allow for quantifying a causal effect on the text itself. In this work, we develop a framework for adapting existing generation models to produce synthetic text datasets with known causal effects. We use this framework to perform an empirical comparison of four recently-proposed methods for estimating causal effects from text data. We release our code and synthetic datasets.
Abstract:The #MeToo movement on Twitter has drawn attention to the pervasive nature of sexual harassment and violence. While #MeToo has been praised for providing support for self-disclosures of harassment or violence and shifting societal response, it has also been criticized for exemplifying how women of color have been discounted for their historical contributions to and excluded from feminist movements. Through an analysis of over 600,000 tweets from over 256,000 unique users, we examine online #MeToo conversations across gender and racial/ethnic identities and the topics that each demographic emphasized. We found that tweets authored by white women were overrepresented in the movement compared to other demographics, aligning with criticism of unequal representation. We found that intersected identities contributed differing narratives to frame the movement, co-opted the movement to raise visibility in parallel ongoing movements, employed the same hashtags both critically and supportively, and revived and created new hashtags in response to pivotal moments. Notably, tweets authored by black women often expressed emotional support and were critical about differential treatment in the justice system and by police. In comparison, tweets authored by white women and men often highlighted sexual harassment and violence by public figures and weaved in more general political discussions. We discuss the implications of work for digital activism research and design including suggestions to raise visibility by those who were under-represented in this hashtag activism movement. Content warning: this article discusses issues of sexual harassment and violence.
Abstract:Computational social science studies often contextualize content analysis within standard demographics. Since demographics are unavailable on many social media platforms (e.g. Twitter) numerous studies have inferred demographics automatically. Despite many studies presenting proof of concept inference of race and ethnicity, training of practical systems remains elusive since there are few annotated datasets. Existing datasets are small, inaccurate, or fail to cover the four most common racial and ethnic groups in the United States. We present a method to identify self-reports of race and ethnicity from Twitter profile descriptions. Despite errors inherent in automated supervision, we produce models with good performance when measured on gold standard self-report survey data. The result is a reproducible method for creating large-scale training resources for race and ethnicity.
Abstract:Causal understanding is essential for many kinds of decision-making, but causal inference from observational data has typically only been applied to structured, low-dimensional datasets. While text classifiers produce low-dimensional outputs, their use in causal inference has not previously been studied. To facilitate causal analyses based on language data, we consider the role that text classifiers can play in causal inference through established modeling mechanisms from the causality literature on missing data and measurement error. We demonstrate how to conduct causal analyses using text classifiers on simulated and Yelp data, and discuss the opportunities and challenges of future work that uses text data in causal inference.