Abstract:This report presents VibeVoice-ASR, a general-purpose speech understanding framework built upon VibeVoice, designed to address the persistent challenges of context fragmentation and multi-speaker complexity in long-form audio (e.g., meetings, podcasts) that remain despite recent advancements in short-form speech recognition. Unlike traditional pipelined approaches that rely on audio chunking, VibeVoice-ASRsupports single-pass processing for up to 60 minutes of audio. It unifies Automatic Speech Recognition, Speaker Diarization, and Timestamping into a single end-to-end generation task. In addition, VibeVoice-ASR supports over 50 languages, requires no explicit language setting, and natively handles code-switching within and across utterances. Furthermore, we introduce a prompt-based context injection mechanism that allows users to supply customized conetxt, significantly improving accuracy on domain-specific terminology and polyphonic character disambiguation.
Abstract:A notable gap persists in speech synthesis research and development for Arabic dialects, particularly from a unified modeling perspective. Despite its high practical value, the inherent linguistic complexity of Arabic dialects, further compounded by a lack of standardized data, benchmarks, and evaluation guidelines, steers researchers toward safer ground. To bridge this divide, we present Habibi, a suite of specialized and unified text-to-speech models that harnesses existing open-source ASR corpora to support a wide range of high- to low-resource Arabic dialects through linguistically-informed curriculum learning. Our approach outperforms the leading commercial service in generation quality, while maintaining extensibility through effective in-context learning, without requiring text diacritization. We are committed to open-sourcing the model, along with creating the first systematic benchmark for multi-dialect Arabic speech synthesis. Furthermore, by identifying the key challenges in and establishing evaluation standards for the process, we aim to provide a solid groundwork for subsequent research. Resources at https://SWivid.github.io/Habibi/ .