Abstract:The analysis and prediction of agent trajectories are crucial for decision-making processes in intelligent systems, with precise short-term trajectory forecasting being highly significant across a range of applications. Agents and their social interactions have been quantified and modeled by researchers from various perspectives; however, substantial limitations exist in the current work due to the inherent high uncertainty of agent intentions and the complex higher-order influences among neighboring groups. SocialMOIF is proposed to tackle these challenges, concentrating on the higher-order intention interactions among neighboring groups while reinforcing the primary role of first-order intention interactions between neighbors and the target agent. This method develops a multi-order intention fusion model to achieve a more comprehensive understanding of both direct and indirect intention information. Within SocialMOIF, a trajectory distribution approximator is designed to guide the trajectories toward values that align more closely with the actual data, thereby enhancing model interpretability. Furthermore, a global trajectory optimizer is introduced to enable more accurate and efficient parallel predictions. By incorporating a novel loss function that accounts for distance and direction during training, experimental results demonstrate that the model outperforms previous state-of-the-art baselines across multiple metrics in both dynamic and static datasets.
Abstract:Recent advancements have seen Large Language Models (LLMs) and Large Multimodal Models (LMMs) surpassing general human capabilities in various tasks, approaching the proficiency level of human experts across multiple domains. With traditional benchmarks becoming less challenging for these models, new rigorous challenges are essential to gauge their advanced abilities. In this work, we present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,952 problems from Olympiad-level mathematics and physics competitions, including the Chinese college entrance exam. Each problem is detailed with expert-level annotations for step-by-step reasoning. Evaluating top-tier models on OlympiadBench, we implement a comprehensive assessment methodology to accurately evaluate model responses. Notably, the best-performing model, GPT-4V, attains an average score of 17.23% on OlympiadBench, with a mere 11.28% in physics, highlighting the benchmark rigor and the intricacy of physical reasoning. Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies. We hope that our challenging benchmark can serve as a valuable resource for helping future AGI research endeavors.