Abstract:Large Language Models have achieved remarkable results on a variety of mathematical benchmarks. However, concerns remain as to whether these successes reflect genuine mathematical reasoning or superficial pattern recognition. Common evaluation metrics, such as final answer accuracy, fail to disentangle the underlying competencies involved, offering limited diagnostic value. To address these limitations, we introduce SMART: a Self-Generating and Self-Validating Multi-Dimensional Assessment Framework. SMART decomposes mathematical problem solving into four distinct dimensions: understanding, reasoning, arithmetic, and reflection \& refinement. Each dimension is evaluated independently through tailored tasks, enabling interpretable and fine-grained analysis of LLM behavior. Crucially, SMART integrates an automated self-generating and self-validating mechanism to produce and verify benchmark data, ensuring both scalability and reliability. We apply SMART to 21 state-of-the-art open- and closed-source LLMs, uncovering significant discrepancies in their abilities across different dimensions. Our findings demonstrate the inadequacy of final answer accuracy as a sole metric and motivate a new holistic metric to better capture true problem-solving capabilities. Code and benchmarks will be released upon acceptance.
Abstract:Advancements in remote sensing (RS) imagery have provided high-resolution detail and vast coverage, yet existing methods, such as image-level captioning/retrieval and object-level detection/segmentation, often fail to capture mid-scale semantic entities essential for interpreting large-scale scenes. To address this, we propose the conteXtual referring Map (XeMap) task, which focuses on contextual, fine-grained localization of text-referred regions in large-scale RS scenes. Unlike traditional approaches, XeMap enables precise mapping of mid-scale semantic entities that are often overlooked in image-level or object-level methods. To achieve this, we introduce XeMap-Network, a novel architecture designed to handle the complexities of pixel-level cross-modal contextual referring mapping in RS. The network includes a fusion layer that applies self- and cross-attention mechanisms to enhance the interaction between text and image embeddings. Furthermore, we propose a Hierarchical Multi-Scale Semantic Alignment (HMSA) module that aligns multiscale visual features with the text semantic vector, enabling precise multimodal matching across large-scale RS imagery. To support XeMap task, we provide a novel, annotated dataset, XeMap-set, specifically tailored for this task, overcoming the lack of XeMap datasets in RS imagery. XeMap-Network is evaluated in a zero-shot setting against state-of-the-art methods, demonstrating superior performance. This highlights its effectiveness in accurately mapping referring regions and providing valuable insights for interpreting large-scale RS environments.