Abstract:Event cameras have been widely adopted in safety-critical domains such as autonomous driving, robotics, and human-computer interaction. A pressing challenge arises from the vulnerability of deep neural networks to adversarial examples, which poses a significant threat to the reliability of event-based systems. Nevertheless, research into adversarial attacks on events is scarce. This is primarily due to the non-differentiable nature of mainstream event representations, which hinders the extension of gradient-based attack methods. In this paper, we propose MA-ADV, a novel \textbf{M}otion-\textbf{A}ware \textbf{Adv}ersarial framework. To the best of our knowledge, this is the first work to generate adversarial events by leveraging point cloud representations. MA-ADV accounts for high-frequency noise in events and employs a diffusion-based approach to smooth perturbations, while fully leveraging the spatial and temporal relationships among events. Finally, MA-ADV identifies the minimal-cost perturbation through a combination of sample-wise Adam optimization, iterative refinement, and binary search. Extensive experimental results validate that MA-ADV ensures a 100\% attack success rate with minimal perturbation cost, and also demonstrate enhanced robustness against defenses, underscoring the critical security challenges facing future event-based perception systems.
Abstract:Large Language Models (LLMs) have been widely adopted across various domains, yet their application in the medical field poses unique challenges, particularly concerning the generation of hallucinations. Hallucinations in open-ended long medical text manifest as misleading critical claims, which are difficult to verify due to two reasons. First, critical claims are often deeply entangled within the text and cannot be extracted based solely on surface-level presentation. Second, verifying these claims is challenging because surface-level token-based retrieval often lacks precise or specific evidence, leaving the claims unverifiable without deeper mechanism-based analysis. In this paper, we introduce a novel method termed Iterative Tree Analysis (ITA) for medical critics. ITA is designed to extract implicit claims from long medical texts and verify each claim through an iterative and adaptive tree-like reasoning process. This process involves a combination of top-down task decomposition and bottom-up evidence consolidation, enabling precise verification of complex medical claims through detailed mechanism-level reasoning. Our extensive experiments demonstrate that ITA significantly outperforms previous methods in detecting factual inaccuracies in complex medical text verification tasks by 10%. Additionally, we will release a comprehensive test set to the public, aiming to foster further advancements in research within this domain.
Abstract:Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.