Abstract:This work aims at solving the problems with intractable sparsity-inducing norms that are often encountered in various machine learning tasks, such as multi-task learning, subspace clustering, feature selection, robust principal component analysis, and so on. Specifically, an Iteratively Re-Weighted method (IRW) with solid convergence guarantee is provided. We investigate its convergence speed via numerous experiments on real data. Furthermore, in order to validate the practicality of IRW, we use it to solve a concrete robust feature selection model with complicated objective function. The experimental results show that the model coupled with proposed optimization method outperforms alternative methods significantly.
Abstract:Low rank regularization, in essence, involves introducing a low rank or approximately low rank assumption for matrix we aim to learn, which has achieved great success in many fields including machine learning, data mining and computer version. Over the last decade, much progress has been made in theories and practical applications. Nevertheless, the intersection between them is very slight. In order to construct a bridge between practical applications and theoretical research, in this paper we provide a comprehensive survey for low rank regularization. We first review several traditional machine learning models using low rank regularization, and then show their (or their variants) applications in solving practical issues, such as non-rigid structure from motion and image denoising. Subsequently, we summarize the regularizers and optimization methods that achieve great success in traditional machine learning tasks but are rarely seen in solving practical issues. Finally, we provide a discussion and comparison for some representative regularizers including convex and non-convex relaxations. Extensive experimental results demonstrate that non-convex regularizers can provide a large advantage over the nuclear norm, the regularizer widely used in solving practical issues.