Alert button
Picture for Yiyun Zhao

Yiyun Zhao

Alert button

Importance of Synthesizing High-quality Data for Text-to-SQL Parsing

Dec 17, 2022
Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan, Henry Zhu, Anuj Chauhan, Alexander Li, Lin Pan, Jun Wang, Chung-Wei Hang, Sheng Zhang, Marvin Dong, Joe Lilien, Patrick Ng, Zhiguo Wang, Vittorio Castelli, Bing Xiang

Figure 1 for Importance of Synthesizing High-quality Data for Text-to-SQL Parsing
Figure 2 for Importance of Synthesizing High-quality Data for Text-to-SQL Parsing
Figure 3 for Importance of Synthesizing High-quality Data for Text-to-SQL Parsing
Figure 4 for Importance of Synthesizing High-quality Data for Text-to-SQL Parsing

Recently, there has been increasing interest in synthesizing data to improve downstream text-to-SQL tasks. In this paper, we first examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data. We observed two shortcomings: illogical synthetic SQL queries from independent column sampling and arbitrary table joins. To address these issues, we propose a novel synthesis framework that incorporates key relationships from schema, imposes strong typing, and conducts schema-distance-weighted column sampling. We also adopt an intermediate representation (IR) for the SQL-to-text task to further improve the quality of the generated natural language questions. When existing powerful semantic parsers are pre-finetuned on our high-quality synthesized data, our experiments show that these models have significant accuracy boosts on popular benchmarks, including new state-of-the-art performance on Spider.

Viaarxiv icon

NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results

May 08, 2020
Abdelrahman Abdelhamed, Mahmoud Afifi, Radu Timofte, Michael S. Brown, Yue Cao, Zhilu Zhang, Wangmeng Zuo, Xiaoling Zhang, Jiye Liu, Wendong Chen, Changyuan Wen, Meng Liu, Shuailin Lv, Yunchao Zhang, Zhihong Pan, Baopu Li, Teng Xi, Yanwen Fan, Xiyu Yu, Gang Zhang, Jingtuo Liu, Junyu Han, Errui Ding, Songhyun Yu, Bumjun Park, Jechang Jeong, Shuai Liu, Ziyao Zong, Nan Nan, Chenghua Li, Zengli Yang, Long Bao, Shuangquan Wang, Dongwoon Bai, Jungwon Lee, Youngjung Kim, Kyeongha Rho, Changyeop Shin, Sungho Kim, Pengliang Tang, Yiyun Zhao, Yuqian Zhou, Yuchen Fan, Thomas Huang, Zhihao Li, Nisarg A. Shah, Wei Liu, Qiong Yan, Yuzhi Zhao, Marcin Możejko, Tomasz Latkowski, Lukasz Treszczotko, Michał Szafraniuk, Krzysztof Trojanowski, Yanhong Wu, Pablo Navarrete Michelini, Fengshuo Hu, Yunhua Lu, Sujin Kim, Wonjin Kim, Jaayeon Lee, Jang-Hwan Choi, Magauiya Zhussip, Azamat Khassenov, Jong Hyun Kim, Hwechul Cho, Priya Kansal, Sabari Nathan, Zhangyu Ye, Xiwen Lu, Yaqi Wu, Jiangxin Yang, Yanlong Cao, Siliang Tang, Yanpeng Cao, Matteo Maggioni, Ioannis Marras, Thomas Tanay, Gregory Slabaugh, Youliang Yan, Myungjoo Kang, Han-Soo Choi, Kyungmin Song, Shusong Xu, Xiaomu Lu, Tingniao Wang, Chunxia Lei, Bin Liu, Rajat Gupta, Vineet Kumar

Figure 1 for NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results
Figure 2 for NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results
Figure 3 for NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results
Figure 4 for NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results

This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results. The challenge is a new version of the previous NTIRE 2019 challenge on real image denoising that was based on the SIDD benchmark. This challenge is based on a newly collected validation and testing image datasets, and hence, named SIDD+. This challenge has two tracks for quantitatively evaluating image denoising performance in (1) the Bayer-pattern rawRGB and (2) the standard RGB (sRGB) color spaces. Each track ~250 registered participants. A total of 22 teams, proposing 24 methods, competed in the final phase of the challenge. The proposed methods by the participating teams represent the current state-of-the-art performance in image denoising targeting real noisy images. The newly collected SIDD+ datasets are publicly available at: https://bit.ly/siddplus_data.

Viaarxiv icon

Pyramid Real Image Denoising Network

Aug 01, 2019
Yiyun Zhao, Zhuqing Jiang, Aidong Men, Guodong Ju

Figure 1 for Pyramid Real Image Denoising Network
Figure 2 for Pyramid Real Image Denoising Network
Figure 3 for Pyramid Real Image Denoising Network
Figure 4 for Pyramid Real Image Denoising Network

While deep Convolutional Neural Networks (CNNs) have shown extraordinary capability of modelling specific noise and denoising, they still perform poorly on real-world noisy images. The main reason is that the real-world noise is more sophisticated and diverse. To tackle the issue of blind denoising, in this paper, we propose a novel pyramid real image denoising network (PRIDNet), which contains three stages. First, the noise estimation stage uses channel attention mechanism to recalibrate the channel importance of input noise. Second, at the multi-scale denoising stage, pyramid pooling is utilized to extract multi-scale features. Third, the stage of feature fusion adopts a kernel selecting operation to adaptively fuse multi-scale features. Experiments on two datasets of real noisy photographs demonstrate that our approach can achieve competitive performance in comparison with state-of-the-art denoisers in terms of both quantitative measure and visual perception quality.

Viaarxiv icon