Abstract:Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
Abstract:Vision-language models (VLMs) exhibit strong zero-shot generalization on natural images and show early promise in interpretable medical image analysis. However, existing benchmarks do not systematically evaluate whether these models truly reason like human clinicians or merely imitate superficial patterns. To address this gap, we propose DrVD-Bench, the first multimodal benchmark for clinical visual reasoning. DrVD-Bench consists of three modules: Visual Evidence Comprehension, Reasoning Trajectory Assessment, and Report Generation Evaluation, comprising a total of 7,789 image-question pairs. Our benchmark covers 20 task types, 17 diagnostic categories, and five imaging modalities-CT, MRI, ultrasound, radiography, and pathology. DrVD-Bench is explicitly structured to reflect the clinical reasoning workflow from modality recognition to lesion identification and diagnosis. We benchmark 19 VLMs, including general-purpose and medical-specific, open-source and proprietary models, and observe that performance drops sharply as reasoning complexity increases. While some models begin to exhibit traces of human-like reasoning, they often still rely on shortcut correlations rather than grounded visual understanding. DrVD-Bench offers a rigorous and structured evaluation framework to guide the development of clinically trustworthy VLMs.