Abstract:Although recent advances in quantum machine learning (QML) offer significant potential for enhancing generative models, particularly in molecular design, a large array of classical approaches still face challenges in achieving high fidelity and validity. In particular, the integration of QML with sequence-based tasks, such as Simplified Molecular Input Line Entry System (SMILES) string reconstruction, remains underexplored and usually suffers from fidelity degradation. In this work, we propose a hybrid quantum-classical architecture for SMILES reconstruction that integrates quantum encoding with classical sequence modeling to improve quantum fidelity and classical similarity. Our approach achieves a quantum fidelity of approximately 84% and a classical reconstruction similarity of 60%, surpassing existing quantum baselines. Our work lays a promising foundation for future QML applications, striking a balance between expressive quantum representations and classical sequence models and catalyzing broader research on quantum-aware sequence models for molecular and drug discovery.
Abstract:With the rapid advancements in large language model (LLM) technology and the emergence of bioinformatics-specific language models (BioLMs), there is a growing need for a comprehensive analysis of the current landscape, computational characteristics, and diverse applications. This survey aims to address this need by providing a thorough review of BioLMs, focusing on their evolution, classification, and distinguishing features, alongside a detailed examination of training methodologies, datasets, and evaluation frameworks. We explore the wide-ranging applications of BioLMs in critical areas such as disease diagnosis, drug discovery, and vaccine development, highlighting their impact and transformative potential in bioinformatics. We identify key challenges and limitations inherent in BioLMs, including data privacy and security concerns, interpretability issues, biases in training data and model outputs, and domain adaptation complexities. Finally, we highlight emerging trends and future directions, offering valuable insights to guide researchers and clinicians toward advancing BioLMs for increasingly sophisticated biological and clinical applications.