Abstract:This paper considers multi-view imaging in a sixth-generation (6G) integrated sensing and communication network, which consists of a transmit base-station (BS), multiple receive BSs connected to a central processing unit (CPU), and multiple extended targets. Our goal is to devise an effective multi-view imaging technique that can jointly leverage the targets' echo signals at all the receive BSs to precisely construct the image of these targets. To achieve this goal, we propose a two-phase approach. In Phase I, each receive BS recovers an individual image based on the sample covariance matrix of its received signals. Specifically, we propose a novel covariance-based imaging framework to jointly estimate effective scattering intensity and grid positions, which reduces the number of estimated parameters leveraging channel statistical properties and allows grid adjustment to conform to target geometry. In Phase II, the CPU fuses the individual images of all the receivers to construct a high-quality image of all the targets. Specifically, we design edge-preserving natural neighbor interpolation (EP-NNI) to map individual heterogeneous images onto common and finer grids, and then propose a joint optimization framework to estimate fused scattering intensity and BS fields of view. Extensive numerical results show that the proposed scheme significantly enhances imaging performance, facilitating high-quality environment reconstruction for future 6G networks.
Abstract:Uplink sensing in integrated sensing and communications (ISAC) systems, such as Perceptive Mobile Networks, is challenging due to the clock asynchronism between transmitter and receiver. Existing solutions typically require the presence of a dominating line-of-sight path and the knowledge of transmitter location at the receiver. In this paper, relaxing these requirements, we propose a novel and effective uplink sensing scheme with the assistance of static anchor points. Two major algorithms are proposed in the scheme. The first algorithm estimates the relative timing and carrier frequency offsets due to clock asynchronism, with respect to those at a randomly selected reference snapshot. Theoretical performance analysis is provided for the algorithm. The estimates from the first algorithm are then used to compensate for the offsets and generate the angle-Doppler maps. Using the maps, the second algorithm identifies the anchor points, and then locates the UE and dynamic targets. Feasibility of UE localization is also analyzed. Simulation results are provided and demonstrate the effectiveness of the proposed algorithms.
Abstract:Bi-static sensing is crucial for exploring the potential of networked sensing capabilities in integrated sensing and communications (ISAC). However, it suffers from the challenging clock asynchronism issue. CSI ratio-based sensing is an effective means to address the issue. Its performance bounds, particular for Doppler sensing, have not been fully understood yet. This work endeavors to fill the research gap. Focusing on a single dynamic path in high-SNR scenarios, we derive the closed-form CRB. Then, through analyzing the mutual interference between dynamic and static paths, we simplify the CRB results by deriving close approximations, further unveiling new insights of the impact of numerous physical parameters on Doppler sensing. Moreover, utilizing the new CRB and analyses, we propose novel waveform optimization strategies for noise- and interference-limited sensing scenarios, which are also empowered by closed-form and efficient solutions. Extensive simulation results are provided to validate the preciseness of the derived CRB results and analyses, with the aid of the maximum-likelihood estimator. The results also demonstrate the substantial enhanced Doppler sensing accuracy and the sensing capabilities for low-speed target achieved by the proposed waveform design.