Abstract:The demand for realistic virtual immersive audio continues to grow, with Head-Related Transfer Functions (HRTFs) playing a key role. HRTFs capture how sound reaches our ears, reflecting unique anatomical features and enhancing spatial perception. It has been shown that personalized HRTFs improve localization accuracy, but their measurement remains time-consuming and requires a noise-free environment. Although machine learning has been shown to reduce the required measurement points and, thus, the measurement time, a controlled environment is still necessary. This paper proposes a method to address this constraint by presenting a novel technique that can upsample sparse, noisy HRTF measurements. The proposed approach combines an HRTF Denoisy U-Net for denoising and an Autoencoding Generative Adversarial Network (AE-GAN) for upsampling from three measurement points. The proposed method achieves a log-spectral distortion (LSD) error of 5.41 dB and a cosine similarity loss of 0.0070, demonstrating the method's effectiveness in HRTF upsampling.
Abstract:Recently, the problem of inaccurate learning targets in crowd counting draws increasing attention. Inspired by a few pioneering work, we solve this problem by trying to predict the indices of pre-defined interval bins of counts instead of the count values themselves. However, an inappropriate interval setting might make the count error contributions from different intervals extremely imbalanced, leading to inferior counting performance. Therefore, we propose a novel count interval partition criterion called Uniform Error Partition (UEP), which always keeps the expected counting error contributions equal for all intervals to minimize the prediction risk. Then to mitigate the inevitably introduced discretization errors in the count quantization process, we propose another criterion called Mean Count Proxies (MCP). The MCP criterion selects the best count proxy for each interval to represent its count value during inference, making the overall expected discretization error of an image nearly negligible. As far as we are aware, this work is the first to delve into such a classification task and ends up with a promising solution for count interval partition. Following the above two theoretically demonstrated criterions, we propose a simple yet effective model termed Uniform Error Partition Network (UEPNet), which achieves state-of-the-art performance on several challenging datasets. The codes will be available at: https://github.com/TencentYoutuResearch/CrowdCounting-UEPNet.