Abstract:The demand for realistic virtual immersive audio continues to grow, with Head-Related Transfer Functions (HRTFs) playing a key role. HRTFs capture how sound reaches our ears, reflecting unique anatomical features and enhancing spatial perception. It has been shown that personalized HRTFs improve localization accuracy, but their measurement remains time-consuming and requires a noise-free environment. Although machine learning has been shown to reduce the required measurement points and, thus, the measurement time, a controlled environment is still necessary. This paper proposes a method to address this constraint by presenting a novel technique that can upsample sparse, noisy HRTF measurements. The proposed approach combines an HRTF Denoisy U-Net for denoising and an Autoencoding Generative Adversarial Network (AE-GAN) for upsampling from three measurement points. The proposed method achieves a log-spectral distortion (LSD) error of 5.41 dB and a cosine similarity loss of 0.0070, demonstrating the method's effectiveness in HRTF upsampling.
Abstract:This paper studies modulation spectrum features ($\Phi$) and mel-frequency cepstral coefficients ($\Psi$) in joint speaker diarization and identification (JSID). JSID is important as speaker diarization on its own to distinguish speakers is insufficient for many applications, it is often necessary to identify speakers as well. Machine learning models are set up using convolutional neural networks (CNNs) on $\Phi$ and recurrent neural networks $\unicode{x2013}$ long short-term memory (LSTMs) on $\Psi$, then concatenating into fully connected layers. Experiment 1 shows models on both $\Phi$ and $\Psi$ have better diarization error rates (DERs) than models on either alone; a CNN on $\Phi$ has DER 29.09\%, compared to 27.78\% for a LSTM on $\Psi$ and 19.44\% for a model on both. Experiment 1 also investigates aleatoric uncertainties and shows the model on both $\Phi$ and $\Psi$ has mean entropy 0.927~bits (out of 4~bits) for correct predictions compared to 1.896~bits for incorrect predictions which, along with entropy histogram shapes, shows the model helpfully indicates where it is uncertain. Experiment 2 investigates epistemic uncertainties as well as aleatoric using Monte Carlo dropout (MCD). It compares models on both $\Phi$ and $\Psi$ with models trained on x-vectors ($X$), before applying Kalman filter smoothing on epistemic uncertainties for resegmentation and model ensembles. While the two models on $X$ (DERs 10.23\% and 9.74\%) outperform those on $\Phi$ and $\Psi$ (DER 17.85\%) after their individual Kalman filter smoothing, combining them using a Kalman filter smoothing method improves the DER to 9.29\%. Aleatoric uncertainties are higher for incorrect predictions. Both Experiments show models on $\Phi$ do not distinguish overlapping speakers as well as anticipated. However, Experiment 2 shows model ensembles do better with overlapping speakers than individual models do.
Abstract:An individualised head-related transfer function (HRTF) is essential for creating realistic virtual reality (VR) and augmented reality (AR) environments. However, acoustically measuring high-quality HRTFs requires expensive equipment and an acoustic lab setting. To overcome these limitations and to make this measurement more efficient HRTF upsampling has been exploited in the past where a high-resolution HRTF is created from a low-resolution one. This paper demonstrates how generative adversarial networks (GANs) can be applied to HRTF upsampling. We propose a novel approach that transforms the HRTF data for convenient use with a convolutional super-resolution generative adversarial network (SRGAN). This new approach is benchmarked against two baselines: barycentric upsampling and a HRTF selection approach. Experimental results show that the proposed method outperforms both baselines in terms of log-spectral distortion (LSD) and localisation performance using perceptual models when the input HRTF is sparse.