Abstract:Vision-language tracking has gained increasing attention in many scenarios. This task simultaneously deals with visual and linguistic information to localize objects in videos. Despite its growing utility, the development of vision-language tracking methods remains in its early stage. Current vision-language trackers usually employ Transformer architectures for interactive integration of template, search, and text features. However, persistent challenges about low-semantic images including prevalent image blurriness, low resolution and so on, may compromise model performance through degraded cross-modal understanding. To solve this problem, language assistance is usually used to deal with the obstacles posed by low-semantic images. However, due to the existing gap between current textual and visual features, direct concatenation and fusion of these features may have limited effectiveness. To address these challenges, we introduce a pioneering Generative Language-AssisteD tracking model, GLAD, which utilizes diffusion models for the generative multi-modal fusion of text description and template image to bolster compatibility between language and image and enhance template image semantic information. Our approach demonstrates notable improvements over the existing fusion paradigms. Blurry and semantically ambiguous template images can be restored to improve multi-modal features in the generative fusion paradigm. Experiments show that our method establishes a new state-of-the-art on multiple benchmarks and achieves an impressive inference speed. The code and models will be released at: https://github.com/Confetti-lxy/GLAD
Abstract:Although significant advances have been achieved in SAR land-cover classification, recent methods remain predominantly focused on supervised learning, which relies heavily on extensive labeled datasets. This dependency not only limits scalability and generalization but also restricts adaptability to diverse application scenarios. In this paper, a general-purpose foundation model for SAR land-cover classification is developed, serving as a robust cornerstone to accelerate the development and deployment of various downstream models. Specifically, a Dynamic Instance and Contour Consistency Contrastive Learning (DI3CL) pre-training framework is presented, which incorporates a Dynamic Instance (DI) module and a Contour Consistency (CC) module. DI module enhances global contextual awareness by enforcing local consistency across different views of the same region. CC module leverages shallow feature maps to guide the model to focus on the geometric contours of SAR land-cover objects, thereby improving structural discrimination. Additionally, to enhance robustness and generalization during pre-training, a large-scale and diverse dataset named SARSense, comprising 460,532 SAR images, is constructed to enable the model to capture comprehensive and representative features. To evaluate the generalization capability of our foundation model, we conducted extensive experiments across a variety of SAR land-cover classification tasks, including SAR land-cover mapping, water body detection, and road extraction. The results consistently demonstrate that the proposed DI3CL outperforms existing methods. Our code and pre-trained weights are publicly available at: https://github.com/SARpre-train/DI3CL.