Abstract:Recommender systems filter contents/items valuable to users by inferring preferences from user features and historical behaviors. Mainstream approaches follow the learning-to-rank paradigm, which focus on discovering and modeling item topics (e.g., categories), and capturing user preferences on these topics based on historical interactions. However, this paradigm often neglects the modeling of user characteristics and their social roles, which are logical confounders influencing the correlated interest and user preference transition. To bridge this gap, we introduce the user role identification task and the behavioral logic modeling task that aim to explicitly model user roles and learn the logical relations between item topics and user social roles. We show that it is possible to explicitly solve these tasks through an efficient integration framework of Large Language Model (LLM) and recommendation systems, for which we propose TagCF. On the one hand, the exploitation of the LLM's world knowledge and logic inference ability produces a virtual logic graph that reveals dynamic and expressive knowledge of users, augmenting the recommendation performance. On the other hand, the user role aligns the user behavioral logic with the observed user feedback, refining our understanding of user behaviors. Additionally, we also show that the extracted user-item logic graph is empirically a general knowledge that can benefit a wide range of recommendation tasks, and conduct experiments on industrial and several public datasets as verification.
Abstract:With the rise of short video platforms, video recommendation technology faces more complex challenges. Currently, there are multiple non-personalized modules in the video recommendation pipeline that urgently need personalized modeling techniques for improvement. Inspired by the success of uplift modeling in online marketing, we attempt to implement uplift modeling in the video recommendation scenario. However, we face two main challenges: 1) Design and utilization of treatments, and 2) Capture of user real-time interest. To address them, we design adjusting the distribution of videos with varying durations as the treatment and propose Coarse-to-fine Dynamic Uplift Modeling (CDUM) for real-time video recommendation. CDUM consists of two modules, CPM and FIC. The former module fully utilizes the offline features of users to model their long-term preferences, while the latter module leverages online real-time contextual features and request-level candidates to model users' real-time interests. These two modules work together to dynamically identify and targeting specific user groups and applying treatments effectively. Further, we conduct comprehensive experiments on the offline public and industrial datasets and online A/B test, demonstrating the superiority and effectiveness of our proposed CDUM. Our proposed CDUM is eventually fully deployed on the Kuaishou platform, serving hundreds of millions of users every day. The source code will be provided after the paper is accepted.