Abstract:For deep learning methods of image super-resolution, the most critical issue is whether the paired low and high resolution images for training accurately reflect the sampling process of real cameras. Low and high resolution (LR$\sim$HR) image pairs synthesized by existing degradation models (e.g. bicubic downsampling) deviate from those in reality; thus the super-resolution CNN trained by these synthesized LR$\sim$HR image pairs does not perform well when being applied to real images. In this paper, we propose a novel method to capture a large set of realistic LR$\sim$HR image pairs using real cameras. The data acquisition is carried out under controllable lab conditions with minimum human intervention and at high throughput (about 500 image pairs per hour). The high level of automation makes it easy to produce a set of real LR$\sim$HR training image pairs for each camera.Our innovation is to shoot images displayed on an ultra-high quality screen at different resolutions. There are three distinctive advantages of our method for image super-resolution. First, as the LR and HR images are taken of a 3D planar surface (the screen) the registration problem fits exactly to a homography model and we can display specially designed markers on the image to improve the registration precision. Second, the displayed digital image file can be exploited as a reference to optimize the high frequency content of the restored image. Third, this high-efficiency data collection method makes it possible to collect a customized dataset for each camera sensor, for which one can train a specific model for the intended camera sensor. Experimental results show that training a super-resolution CNN by our LR$\sim$HR dataset has superior restoration performance than training it by existing datasets on real world images at the inference stage.
Abstract:Arguably the most common and salient object in daily video communications is the talking head, as encountered in social media, virtual classrooms, teleconferences, news broadcasting, talk shows, etc. When communication bandwidth is limited by network congestions or cost effectiveness, compression artifacts in talking head videos are inevitable. The resulting video quality degradation is highly visible and objectionable due to high acuity of human visual system to faces. To solve this problem, we develop a multi-modality deep convolutional neural network method for restoring face videos that are aggressively compressed. The main innovation is a new DCNN architecture that incorporates known priors of multiple modalities: the video-synchronized speech signal and semantic elements of the compression code stream, including motion vectors, code partition map and quantization parameters. These priors strongly correlate with the latent video and hence they are able to enhance the capability of deep learning to remove compression artifacts. Ample empirical evidences are presented to validate the superior performance of the proposed DCNN method on face videos over the existing state-of-the-art methods.
Abstract:Nighttime photographers are often troubled by light pollution of unwanted artificial lights. Artificial lights, after scattered by aerosols in the atmosphere, can inundate the starlight and degrade the quality of nighttime images, by reducing contrast and dynamic range and causing hazes. In this paper we develop a physically-based light pollution reduction (LPR) algorithm that can substantially alleviate the aforementioned degradations of perceptual quality and restore the pristine state of night sky. The key to the success of the proposed LPR algorithm is an inverse method to estimate the spatial radiance distribution and spectral signature of ground artificial lights. Extensive experiments are carried out to evaluate the efficacy and limitations of the LPR algorithm.
Abstract:We propose a deep learning system for attention-guided dual-layer image compression (AGDL). In the AGDL compression system, an image is encoded into two layers, a base layer and an attention-guided refinement layer. Unlike the existing ROI image compression methods that spend an extra bit budget equally on all pixels in ROI, AGDL employs a CNN module to predict those pixels on and near a saliency sketch within ROI that are critical to perceptual quality. Only the critical pixels are further sampled by compressive sensing (CS) to form a very compact refinement layer. Another novel CNN method is developed to jointly decode the two compression layers for a much refined reconstruction, while strictly satisfying the transmitted CS constraints on perceptually critical pixels. Extensive experiments demonstrate that the proposed AGDL system advances the state of the art in perception-aware image compression.
Abstract:We propose a novel deep multi-modality neural network for restoring very low bit rate videos of talking heads. Such video contents are very common in social media, teleconferencing, distance education, tele-medicine, etc., and often need to be transmitted with limited bandwidth. The proposed CNN method exploits the correlations among three modalities, video, audio and emotion state of the speaker, to remove the video compression artifacts caused by spatial down sampling and quantization. The deep learning approach turns out to be ideally suited for the video restoration task, as the complex non-linear cross-modality correlations are very difficult to model analytically and explicitly. The new method is a video post processor that can significantly boost the perceptual quality of aggressively compressed talking head videos, while being fully compatible with all existing video compression standards.
Abstract:Whole slide imaging (WSI) is an emerging technology for digital pathology. The process of autofocusing is the main influence of the performance of WSI. Traditional autofocusing methods either are time-consuming due to repetitive mechanical motions, or require additional hardware and thus are not compatible to current WSI systems. In this paper, we propose the concept of \textit{virtual autofocusing}, which does not rely on mechanical adjustment to conduct refocusing but instead recovers in-focus images in an offline learning-based manner. With the initial focal position, we only perform two-shot imaging, in contrast traditional methods commonly need to conduct as many as 21 times image shooting in each tile scanning. Considering that the two captured out-of-focus images retain pieces of partial information about the underlying in-focus image, we propose a U-Net-inspired deep neural network based approach for fusing them into a recovered in-focus image. The proposed scheme is fast in tissue slides scanning, enabling a high-throughput generation of digital pathology images. Experimental results demonstrate that our scheme achieves satisfactory refocusing performance.
Abstract:In many professional fields, such as medicine, remote sensing and sciences, users often demand image compression methods to be mathematically lossless. But lossless image coding has a rather low compression ratio (around 2:1 for natural images). The only known technique to achieve significant compression while meeting the stringent fidelity requirements is the methodology of $\ell_\infty$-constrained coding that was developed and standardized in nineties. We make a major progress in $\ell_\infty$-constrained image coding after two decades, by developing a novel CNN-based soft $\ell_\infty$-constrained decoding method. The new method repairs compression defects by using a restoration CNN called the $\ell_\infty\mbox{-SDNet}$ to map a conventionally decoded image to the latent image. A unique strength of the $\ell_\infty\mbox{-SDNet}$ is its ability to enforce a tight error bound on a per pixel basis. As such, no small distinctive structures of the original image can be dropped or distorted, even if they are statistical outliers that are otherwise sacrificed by mainstream CNN restoration methods. More importantly, this research ushers in a new image compression system of $\ell_\infty$-constrained encoding and deep soft decoding ($\ell_\infty\mbox{-ED}^2$). The $\ell_\infty \mbox{-ED}^2$ approach beats the best of existing lossy image compression methods (e.g., BPG, WebP, etc.) not only in $\ell_\infty$ but also in $\ell_2$ error metric and perceptual quality, for bit rates near the threshold of perceptually transparent reconstruction. Operationally, the new compression system is practical, with a low-complexity real-time encoder and a cascade decoder consisting of a fast initial decoder and an optional CNN soft decoder.
Abstract:We present a CNN-based predictive lossless compression scheme for raw color mosaic images of digital cameras. This specialized application problem was previously understudied but it is now becoming increasingly important, because modern CNN methods for image restoration tasks (e.g., superresolution, low lighting enhancement, deblurring), must operate on original raw mosaic images to obtain the best possible results. The key innovation of this paper is a high-order nonlinear CNN predictor of spatial-spectral mosaic patterns. The deep learning prediction can model highly complex sample dependencies in spatial-spectral mosaic images more accurately and hence remove statistical redundancies more thoroughly than existing image predictors. Experiments show that the proposed CNN predictor achieves unprecedented lossless compression performance on camera raw images.
Abstract:Single Image Super-Resolution (SISR) task refers to learn a mapping from low-resolution images to the corresponding high-resolution ones. This task is known to be extremely difficult since it is an ill-posed problem. Recently, Convolutional Neural Networks (CNNs) have achieved state of the art performance on SISR. However, the images produced by CNNs do not contain fine details of the images. Generative Adversarial Networks (GANs) aim to solve this issue and recover sharp details. Nevertheless, GANs are notoriously difficult to train. Besides that, they generate artifacts in the high-resolution images. In this paper, we have proposed a method in which CNNs try to align images in different spaces rather than only the pixel space. Such a space is designed using convex optimization techniques. CNNs are encouraged to learn high-frequency components of the images as well as low-frequency components. We have shown that the proposed method can recover fine details of the images and it is stable in the training process.
Abstract:Given the success of the deep convolutional neural networks (DCNNs) in applications of visual recognition and classification, it would be tantalizing to test if DCNNs can also learn spatial concepts, such as straightness, convexity, left/right, front/back, relative size, aspect ratio, polygons, etc., from varied visual examples of these concepts that are simple and yet vital for spatial reasoning. Much to our dismay, extensive experiments of the type of cognitive psychology demonstrate that the data-driven deep learning (DL) cannot see through superficial variations in visual representations and grasp the spatial concept in abstraction. The root cause of failure turns out to be the learning methodology, not the computational model of the neural network itself. By incorporating task-specific convolutional kernels, we are able to construct DCNNs for spatial cognition tasks that can generalize to input images not drawn from the same distribution of the training set. This work raises a precaution that without manually-incorporated priors or features DCCNs may fail spatial cognitive tasks at rudimentary level.