Abstract:Multi-modal entity alignment aims to identify equivalent entities between two multi-modal Knowledge graphs by integrating multi-modal data, such as images and text, to enrich the semantic representations of entities. However, existing methods may overlook the structural contextual information within each modality, making them vulnerable to interference from shallow features. To address these challenges, we propose MyGram, a modality-aware graph transformer with global distribution for multi-modal entity alignment. Specifically, we develop a modality diffusion learning module to capture deep structural contextual information within modalities and enable fine-grained multi-modal fusion. In addition, we introduce a Gram Loss that acts as a regularization constraint by minimizing the volume of a 4-dimensional parallelotope formed by multi-modal features, thereby achieving global distribution consistency across modalities. We conduct experiments on five public datasets. Results show that MyGram outperforms baseline models, achieving a maximum improvement of 4.8% in Hits@1 on FBDB15K, 9.9% on FBYG15K, and 4.3% on DBP15K.
Abstract:Visual Question Answering (VQA) requires models to reason over multimodal information, combining visual and textual data. With the development of continual learning, significant progress has been made in retaining knowledge and adapting to new information in the VQA domain. However, current methods often struggle with balancing knowledge retention, adaptation, and robust feature representation. To address these challenges, we propose a novel framework with adaptive memory allocation and global noise filtering called MacVQA for visual question answering. MacVQA fuses visual and question information while filtering noise to ensure robust representations, and employs prototype-based memory allocation to optimize feature quality and memory usage. These designs enable MacVQA to balance knowledge acquisition, retention, and compositional generalization in continual VQA learning. Experiments on ten continual VQA tasks show that MacVQA outperforms existing baselines, achieving 43.38% average accuracy and 2.32% average forgetting on standard tasks, and 42.53% average accuracy and 3.60% average forgetting on novel composition tasks.
Abstract:Knowledge Tracing (KT) aims to dynamically model a student's mastery of knowledge concepts based on their historical learning interactions. Most current methods rely on single-point estimates, which cannot distinguish true ability from outburst or carelessness, creating ambiguity in judging mastery. To address this issue, we propose a Knowledge Mastery-State Disambiguation for Knowledge Tracing model (KeenKT), which represents a student's knowledge state at each interaction using a Normal-Inverse-Gaussian (NIG) distribution, thereby capturing the fluctuations in student learning behaviors. Furthermore, we design an NIG-distance-based attention mechanism to model the dynamic evolution of the knowledge state. In addition, we introduce a diffusion-based denoising reconstruction loss and a distributional contrastive learning loss to enhance the model's robustness. Extensive experiments on six public datasets demonstrate that KeenKT outperforms SOTA KT models in terms of prediction accuracy and sensitivity to behavioral fluctuations. The proposed method yields the maximum AUC improvement of 5.85% and the maximum ACC improvement of 6.89%.