Abstract:We present a hybrid cross-device localization pipeline developed for the CroCoDL 2025 Challenge. Our approach integrates a shared retrieval encoder and two complementary localization branches: a classical geometric branch using feature fusion and PnP, and a neural feed-forward branch (MapAnything) for metric localization conditioned on geometric inputs. A neural-guided candidate pruning strategy further filters unreliable map frames based on translation consistency, while depth-conditioned localization refines metric scale and translation precision on Spot scenes. These components jointly lead to significant improvements in recall and accuracy across both HYDRO and SUCCU benchmarks. Our method achieved a final score of 92.62 (R@0.5m, 5°) during the challenge.
Abstract:Neural Radiance Fields (NeRF) have demonstrated remarkable performance in novel view synthesis. However, there is much improvement room on restoring 3D scenes based on NeRF from corrupted images, which are common in natural scene captures and can significantly impact the effectiveness of NeRF. This paper introduces NeRF-MIR, a novel neural rendering approach specifically proposed for the restoration of masked images, demonstrating the potential of NeRF in this domain. Recognizing that randomly emitting rays to pixels in NeRF may not effectively learn intricate image textures, we propose a \textbf{P}atch-based \textbf{E}ntropy for \textbf{R}ay \textbf{E}mitting (\textbf{PERE}) strategy to distribute emitted rays properly. This enables NeRF-MIR to fuse comprehensive information from images of different views. Additionally, we introduce a \textbf{P}rogressively \textbf{I}terative \textbf{RE}storation (\textbf{PIRE}) mechanism to restore the masked regions in a self-training process. Furthermore, we design a dynamically-weighted loss function that automatically recalibrates the loss weights for masked regions. As existing datasets do not support NeRF-based masked image restoration, we construct three masked datasets to simulate corrupted scenarios. Extensive experiments on real data and constructed datasets demonstrate the superiority of NeRF-MIR over its counterparts in masked image restoration.
Abstract:This paper presents the first unified distractor removal method, named IDDR-NGP, which directly operates on Instant-NPG. The method is able to remove a wide range of distractors in 3D scenes, such as snowflakes, confetti, defoliation and petals, whereas existing methods usually focus on a specific type of distractors. By incorporating implicit 3D representations with 2D detectors, we demonstrate that it is possible to efficiently restore 3D scenes from multiple corrupted images. We design the learned perceptual image patch similarity~( LPIPS) loss and the multi-view compensation loss (MVCL) to jointly optimize the rendering results of IDDR-NGP, which could aggregate information from multi-view corrupted images. All of them can be trained in an end-to-end manner to synthesize high-quality 3D scenes. To support the research on distractors removal in implicit 3D representations, we build a new benchmark dataset that consists of both synthetic and real-world distractors. To validate the effectiveness and robustness of IDDR-NGP, we provide a wide range of distractors with corresponding annotated labels added to both realistic and synthetic scenes. Extensive experimental results demonstrate the effectiveness and robustness of IDDR-NGP in removing multiple types of distractors. In addition, our approach achieves results comparable with the existing SOTA desnow methods and is capable of accurately removing both realistic and synthetic distractors.
Abstract:Efficient localization and high-quality rendering in large-scale scenes remain a significant challenge due to the computational cost involved. While Scene Coordinate Regression (SCR) methods perform well in small-scale localization, they are limited by the capacity of a single network when extended to large-scale scenes. To address these challenges, we propose the Mixed Expert-based Accelerated Coordinate Encoding method (MACE), which enables efficient localization and high-quality rendering in large-scale scenes. Inspired by the remarkable capabilities of MOE in large model domains, we introduce a gating network to implicitly classify and select sub-networks, ensuring that only a single sub-network is activated during each inference. Furtheremore, we present Auxiliary-Loss-Free Load Balancing(ALF-LB) strategy to enhance the localization accuracy on large-scale scene. Our framework provides a significant reduction in costs while maintaining higher precision, offering an efficient solution for large-scale scene applications. Additional experiments on the Cambridge test set demonstrate that our method achieves high-quality rendering results with merely 10 minutes of training.