Abstract:Graph collaborative filtering (GCF) has gained considerable attention in recommendation systems by leveraging graph learning techniques to enhance collaborative filtering (CF) models. One classical approach in GCF is to learn user and item embeddings by modeling complex graph relations and utilizing these embeddings for CF models. However, the quality of the embeddings significantly impacts the recommendation performance of GCF models. In this paper, we argue that existing graph learning methods are insufficient in generating satisfactory embeddings for CF models. This is because they aggregate neighboring node messages directly, which can result in incorrect estimations of user-item correlations. To overcome this limitation, we propose a novel approach that incorporates causal modeling to explicitly encode the causal effects of neighboring nodes on the target node. This approach enables us to identify spurious correlations and uncover the root causes of user preferences. We introduce Causal Neural Graph Collaborative Filtering (CNGCF), the first causality-aware graph learning framework for CF. CNGCF integrates causal modeling into the graph representation learning process, explicitly coupling causal effects between node pairs into the core message-passing process of graph learning. As a result, CNGCF yields causality-aware embeddings that promote robust recommendations. Our extensive experiments demonstrate that CNGCF provides precise recommendations that align with user preferences. Therefore, our proposed framework can address the limitations of existing GCF models and offer a more effective solution for recommendation systems.
Abstract:Fairness-aware recommendation eliminates discrimination issues to build trustworthy recommendation systems.Explaining the causes of unfair recommendations is critical, as it promotes fairness diagnostics, and thus secures users' trust in recommendation models. Existing fairness explanation methods suffer high computation burdens due to the large-scale search space and the greedy nature of the explanation search process. Besides, they perform score-based optimizations with continuous values, which are not applicable to discrete attributes such as gender and race. In this work, we adopt the novel paradigm of counterfactual explanation from causal inference to explore how minimal alterations in explanations change model fairness, to abandon the greedy search for explanations. We use real-world attributes from Heterogeneous Information Networks (HINs) to empower counterfactual reasoning on discrete attributes. We propose a novel Counterfactual Explanation for Fairness (CFairER) that generates attribute-level counterfactual explanations from HINs for recommendation fairness. Our CFairER conducts off-policy reinforcement learning to seek high-quality counterfactual explanations, with an attentive action pruning reducing the search space of candidate counterfactuals. The counterfactual explanations help to provide rational and proximate explanations for model fairness, while the attentive action pruning narrows the search space of attributes. Extensive experiments demonstrate our proposed model can generate faithful explanations while maintaining favorable recommendation performance.
Abstract:Counterfactual explanations interpret the recommendation mechanism via exploring how minimal alterations on items or users affect the recommendation decisions. Existing counterfactual explainable approaches face huge search space and their explanations are either action-based (e.g., user click) or aspect-based (i.e., item description). We believe item attribute-based explanations are more intuitive and persuadable for users since they explain by fine-grained item demographic features (e.g., brand). Moreover, counterfactual explanation could enhance recommendations by filtering out negative items. In this work, we propose a novel Counterfactual Explainable Recommendation (CERec) to generate item attribute-based counterfactual explanations meanwhile to boost recommendation performance. Our CERec optimizes an explanation policy upon uniformly searching candidate counterfactuals within a reinforcement learning environment. We reduce the huge search space with an adaptive path sampler by using rich context information of a given knowledge graph. We also deploy the explanation policy to a recommendation model to enhance the recommendation. Extensive explainability and recommendation evaluations demonstrate CERec's ability to provide explanations consistent with user preferences and maintain improved recommendations. We release our code at https://github.com/Chrystalii/CERec.
Abstract:Traditional recommendation models trained on observational interaction data have generated large impacts in a wide range of applications, it faces bias problems that cover users' true intent and thus deteriorate the recommendation effectiveness. Existing methods tracks this problem as eliminating bias for the robust recommendation, e.g., by re-weighting training samples or learning disentangled representation. The disentangled representation methods as the state-of-the-art eliminate bias through revealing cause-effect of the bias generation. However, how to design the semantics-aware and unbiased representation for users true intents is largely unexplored. To bridge the gap, we are the first to propose an unbiased and semantics-aware disentanglement learning called CaDSI (Causal Disentanglement for Semantics-Aware Intent Learning) from a causal perspective. Particularly, CaDSI explicitly models the causal relations underlying recommendation task, and thus produces semantics-aware representations via disentangling users true intents aware of specific item context. Moreover, the causal intervention mechanism is designed to eliminate confounding bias stemmed from context information, which further to align the semantics-aware representation with users true intent. Extensive experiments and case studies both validate the robustness and interpretability of our proposed model.
Abstract:In recommendation systems, the existence of the missing-not-at-random (MNAR) problem results in the selection bias issue, degrading the recommendation performance ultimately. A common practice to address MNAR is to treat missing entries from the so-called "exposure" perspective, i.e., modeling how an item is exposed (provided) to a user. Most of the existing approaches use heuristic models or re-weighting strategy on observed ratings to mimic the missing-at-random setting. However, little research has been done to reveal how the ratings are missing from a causal perspective. To bridge the gap, we propose an unbiased and robust method called DENC (De-bias Network Confounding in Recommendation) inspired by confounder analysis in causal inference. In general, DENC provides a causal analysis on MNAR from both the inherent factors (e.g., latent user or item factors) and auxiliary network's perspective. Particularly, the proposed exposure model in DENC can control the social network confounder meanwhile preserves the observed exposure information. We also develop a deconfounding model through the balanced representation learning to retain the primary user and item features, which enables DENC generalize well on the rating prediction. Extensive experiments on three datasets validate that our proposed model outperforms the state-of-the-art baselines.