Abstract:In recent years, unfolding iterative algorithms as neural networks has become an empirical success in solving sparse recovery problems. However, its theoretical understanding is still immature, which prevents us from fully utilizing the power of neural networks. In this work, we study unfolded ISTA (Iterative Shrinkage Thresholding Algorithm) for sparse signal recovery. We introduce a weight structure that is necessary for asymptotic convergence to the true sparse signal. With this structure, unfolded ISTA can attain a linear convergence, which is better than the sublinear convergence of ISTA/FISTA in general cases. Furthermore, we propose to incorporate thresholding in the network to perform support selection, which is easy to implement and able to boost the convergence rate both theoretically and empirically. Extensive simulations, including sparse vector recovery and a compressive sensing experiment on real image data, corroborate our theoretical results and demonstrate their practical usefulness. We have made our codes publicly available: https://github.com/xchen-tamu/linear-lista-cpss.
Abstract:Stochastic gradient methods are the workhorse (algorithms) of large-scale optimization problems in machine learning, signal processing, and other computational sciences and engineering. This paper studies Markov chain gradient descent, a variant of stochastic gradient descent where the random samples are taken on the trajectory of a Markov chain. Existing results of this method assume convex objectives and a reversible Markov chain and thus have their limitations. We establish new non-ergodic convergence under wider step sizes, for nonconvex problems, and for non-reversible finite-state Markov chains. Nonconvexity makes our method applicable to broader problem classes. Non-reversible finite-state Markov chains, on the other hand, can mix substatially faster. To obtain these results, we introduce a new technique that varies the mixing levels of the Markov chains. The reported numerical results validate our contributions.
Abstract:Many optimization algorithms converge to stationary points. When the underlying problem is nonconvex, they may get trapped at local minimizers and occasionally stagnate near saddle points. We propose the Run-and-Inspect Method, which adds an "inspect" phase to existing algorithms that helps escape from non-global stationary points. The inspection samples a set of points in a radius $R$ around the current point. When a sample point yields a sufficient decrease in the objective, we move there and resume an existing algorithm. If no sufficient decrease is found, the current point is called an approximate $R$-local minimizer. We show that an $R$-local minimizer is globally optimal, up to a specific error depending on $R$, if the objective function can be implicitly decomposed into a smooth convex function plus a restricted function that is possibly nonconvex, nonsmooth. For high-dimensional problems, we introduce blockwise inspections to overcome the curse of dimensionality while still maintaining optimality bounds up to a factor equal to the number of blocks. Our method performs well on a set of artificial and realistic nonconvex problems by coupling with gradient descent, coordinate descent, EM, and prox-linear algorithms.
Abstract:This paper presents a new class of gradient methods for distributed machine learning that adaptively skip the gradient calculations to learn with reduced communication and computation. Simple rules are designed to detect slowly-varying gradients and, therefore, trigger the reuse of outdated gradients. The resultant gradient-based algorithms are termed Lazily Aggregated Gradient --- justifying our acronym LAG used henceforth. Theoretically, the merits of this contribution are: i) the convergence rate is the same as batch gradient descent in strongly-convex, convex, and nonconvex smooth cases; and, ii) if the distributed datasets are heterogeneous (quantified by certain measurable constants), the communication rounds needed to achieve a targeted accuracy are reduced thanks to the adaptive reuse of lagged gradients. Numerical experiments on both synthetic and real data corroborate a significant communication reduction compared to alternatives.
Abstract:Performance of distributed optimization and learning systems is bottlenecked by "straggler" nodes and slow communication links, which significantly delay computation. We propose a distributed optimization framework where the dataset is "encoded" to have an over-complete representation with built-in redundancy, and the straggling nodes in the system are dynamically left out of the computation at every iteration, whose loss is compensated by the embedded redundancy. We show that oblivious application of several popular optimization algorithms on encoded data, including gradient descent, L-BFGS, proximal gradient under data parallelism, and coordinate descent under model parallelism, converge to either approximate or exact solutions of the original problem when stragglers are treated as erasures. These convergence results are deterministic, i.e., they establish sample path convergence for arbitrary sequences of delay patterns or distributions on the nodes, and are independent of the tail behavior of the delay distribution. We demonstrate that equiangular tight frames have desirable properties as encoding matrices, and propose efficient mechanisms for encoding large-scale data. We implement the proposed technique on Amazon EC2 clusters, and demonstrate its performance over several learning problems, including matrix factorization, LASSO, ridge regression and logistic regression, and compare the proposed method with uncoded, asynchronous, and data replication strategies.
Abstract:Slow running or straggler tasks can significantly reduce computation speed in distributed computation. Recently, coding-theory-inspired approaches have been applied to mitigate the effect of straggling, through embedding redundancy in certain linear computational steps of the optimization algorithm, thus completing the computation without waiting for the stragglers. In this paper, we propose an alternate approach where we embed the redundancy directly in the data itself, and allow the computation to proceed completely oblivious to encoding. We propose several encoding schemes, and demonstrate that popular batch algorithms, such as gradient descent and L-BFGS, applied in a coding-oblivious manner, deterministically achieve sample path linear convergence to an approximate solution of the original problem, using an arbitrarily varying subset of the nodes at each iteration. Moreover, this approximation can be controlled by the amount of redundancy and the number of nodes used in each iteration. We provide experimental results demonstrating the advantage of the approach over uncoded and data replication strategies.
Abstract:Deep neural networks (DNNs) have shown very promising results for various image restoration (IR) tasks. However, the design of network architectures remains a major challenging for achieving further improvements. While most existing DNN-based methods solve the IR problems by directly mapping low quality images to desirable high-quality images, the observation models characterizing the image degradation processes have been largely ignored. In this paper, we first propose a denoising-based IR algorithm, whose iterative steps can be computed efficiently. Then, the iterative process is unfolded into a deep neural network, which is composed of multiple denoisers modules interleaved with back-projection (BP) modules that ensure the observation consistencies. A convolutional neural network (CNN) based denoiser that can exploit the multi-scale redundancies of natural images is proposed. As such, the proposed network not only exploits the powerful denoising ability of DNNs, but also leverages the prior of the observation model. Through end-to-end training, both the denoisers and the BP modules can be jointly optimized. Experimental results on several IR tasks, e.g., image denoising, super-resolution and deblurring show that the proposed method can lead to very competitive and often state-of-the-art results on several IR tasks, including image denoising, deblurring and super-resolution.
Abstract:Recent years have witnessed the surge of asynchronous parallel (async-parallel) iterative algorithms due to problems involving very large-scale data and a large number of decision variables. Because of asynchrony, the iterates are computed with outdated information, and the age of the outdated information, which we call delay, is the number of times it has been updated since its creation. Almost all recent works prove convergence under the assumption of a finite maximum delay and set their stepsize parameters accordingly. However, the maximum delay is practically unknown. This paper presents convergence analysis of an async-parallel method from a probabilistic viewpoint, and it allows for large unbounded delays. An explicit formula of stepsize that guarantees convergence is given depending on delays' statistics. With $p+1$ identical processors, we empirically measured that delays closely follow the Poisson distribution with parameter $p$, matching our theoretical model, and thus the stepsize can be set accordingly. Simulations on both convex and nonconvex optimization problems demonstrate the validness of our analysis and also show that the existing maximum-delay induced stepsize is too conservative, often slowing down the convergence of the algorithm.
Abstract:While a number of different algorithms have recently been proposed for convolutional dictionary learning, this remains an expensive problem. The single biggest impediment to learning from large training sets is the memory requirements, which grow at least linearly with the size of the training set since all existing methods are batch algorithms. The work reported here addresses this limitation by extending online dictionary learning ideas to the convolutional context.
Abstract:The need for scalable numerical solutions has motivated the development of asynchronous parallel algorithms, where a set of nodes run in parallel with little or no synchronization, thus computing with delayed information. This paper studies the convergence of the asynchronous parallel algorithm ARock under potentially unbounded delays. ARock is a general asynchronous algorithm that has many applications. It parallelizes fixed-point iterations by letting a set of nodes randomly choose solution coordinates and update them in an asynchronous parallel fashion. ARock takes some recent asynchronous coordinate descent algorithms as special cases and gives rise to new asynchronous operator-splitting algorithms. Existing analysis of ARock assumes the delays to be bounded, and uses this bound to set a step size that is important to both convergence and efficiency. Other work, though allowing unbounded delays, imposes strict conditions on the underlying fixed-point operator, resulting in limited applications. In this paper, convergence is established under unbounded delays, which can be either stochastic or deterministic. The proposed step sizes are more practical and generally larger than those in the existing work. The step size adapts to the delay distribution or the current delay being experienced in the system. New Lyapunov functions, which are the key to analyzing asynchronous algorithms, are generated to obtain our results. A set of applicable optimization algorithms with large-scale applications are given, including machine learning and scientific computing algorithms.