Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Weijie Gan, Qiuchen Zhai, Michael Thompson McCann, Cristina Garcia Cardona, Ulugbek S. Kamilov, Brendt Wohlberg

Ptychography is an imaging technique that captures multiple overlapping snapshots of a sample, illuminated coherently by a moving localized probe. The image recovery from ptychographic data is generally achieved via an iterative algorithm that solves a nonlinear phase-field problem derived from measured diffraction patterns. However, these approaches have high computational cost. In this paper, we introduce PtychoDV, a novel deep model-based network designed for efficient, high-quality ptychographic image reconstruction. PtychoDV comprises a vision transformer that generates an initial image from the set of raw measurements, taking into consideration their mutual correlations. This is followed by a deep unrolling network that refines the initial image using learnable convolutional priors and the ptychography measurement model. Experimental results on simulated data demonstrate that PtychoDV is capable of outperforming existing deep learning methods for this problem, and significantly reduces computational cost compared to iterative methodologies, while maintaining competitive performance.

Via

Luke Lozenski, Hanchen Wang, Fu Li, Mark A. Anastasio, Brendt Wohlberg, Youzuo Lin, Umberto Villa

Ultrasound computed tomography (USCT) is an emerging imaging modality that holds great promise for breast imaging. Full-waveform inversion (FWI)-based image reconstruction methods incorporate accurate wave physics to produce high spatial resolution quantitative images of speed of sound or other acoustic properties of the breast tissues from USCT measurement data. However, the high computational cost of FWI reconstruction represents a significant burden for its widespread application in a clinical setting. The research reported here investigates the use of a convolutional neural network (CNN) to learn a mapping from USCT waveform data to speed of sound estimates. The CNN was trained using a supervised approach with a task-informed loss function aiming at preserving features of the image that are relevant to the detection of lesions. A large set of anatomically and physiologically realistic numerical breast phantoms (NBPs) and corresponding simulated USCT measurements was employed during training. Once trained, the CNN can perform real-time FWI image reconstruction from USCT waveform data. The performance of the proposed method was assessed and compared against FWI using a hold-out sample of 41 NBPs and corresponding USCT data. Accuracy was measured using relative mean square error (RMSE), structural self-similarity index measure (SSIM), and lesion detection performance (DICE score). This numerical experiment demonstrates that a supervised learning model can achieve accuracy comparable to FWI in terms of RMSE and SSIM, and better performance in terms of task performance, while significantly reducing computational time.

Via

Qiuchen Zhai, Gregery T. Buzzard, Kevin Mertes, Brendt Wohlberg, Charles A. Bouman

Multi-Agent Consensus Equilibrium (MACE) formulates an inverse imaging problem as a balance among multiple update agents such as data-fitting terms and denoisers. However, each such agent operates on a separate copy of the full image, leading to redundant memory use and slow convergence when each agent affects only a small subset of the full image. In this paper, we extend MACE to Projected Multi-Agent Consensus Equilibrium (PMACE), in which each agent updates only a projected component of the full image, thus greatly reducing memory use for some applications.We describe PMACE in terms of an equilibrium problem and an equivalent fixed point problem and show that in most cases the PMACE equilibrium is not the solution of an optimization problem. To demonstrate the value of PMACE, we apply it to the problem of ptychography, in which a sample is reconstructed from the diffraction patterns resulting from coherent X-ray illumination at multiple overlapping spots. In our PMACE formulation, each spot corresponds to a separate data-fitting agent, with the final solution found as an equilibrium among all the agents. Our results demonstrate that the PMACE reconstruction algorithm generates more accurate reconstructions at a lower computational cost than existing ptychography algorithms when the spots are sparsely sampled.

Via

Zihao Zou, Jiaming Liu, Brendt Wohlberg, Ulugbek S. Kamilov

There has been significant recent interest in the use of deep learning for regularizing imaging inverse problems. Most work in the area has focused on regularization imposed implicitly by convolutional neural networks (CNNs) pre-trained for image reconstruction. In this work, we follow an alternative line of work based on learning explicit regularization functionals that promote preferred solutions. We develop the Explicit Learned Deep Equilibrium Regularizer (ELDER) method for learning explicit regularizers that minimize a mean-squared error (MSE) metric. ELDER is based on a regularization functional parameterized by a CNN and a deep equilibrium learning (DEQ) method for training the functional to be MSE-optimal at the fixed points of the reconstruction algorithm. The explicit regularizer enables ELDER to directly inherit fundamental convergence results from optimization theory. On the other hand, DEQ training enables ELDER to improve over existing explicit regularizers without prohibitive memory complexity during training. We use ELDER to train several approaches to parameterizing explicit regularizers and test their performance on three distinct imaging inverse problems. Our results show that ELDER can greatly improve the quality of explicit regularizers compared to existing methods, and show that learning explicit regularizers does not compromise performance relative to methods based on implicit regularization.

Via

Thilo Balke, Alexander M. Long, Sven C. Vogel, Brendt Wohlberg, Charles A. Bouman

Accurate reconstruction of 2D and 3D isotope densities is a desired capability with great potential impact in applications such as evaluation and development of next-generation nuclear fuels. Neutron time-of-flight (TOF) resonance imaging offers a potential approach by exploiting the characteristic neutron adsorption spectra of each isotope. However, it is a major challenge to compute quantitatively accurate images due to a variety of confounding effects such as severe Poisson noise, background scatter, beam non-uniformity, absorption non-linearity, and extended source pulse duration. We present the TRINIDI algorithm which is based on a two-step process in which we first estimate the neutron flux and background counts, and then reconstruct the areal densities of each isotope and pixel. Both components are based on the inversion of a forward model that accounts for the highly non-linear absorption, energy-dependent emission profile, and Poisson noise, while also modeling the substantial spatio-temporal variation of the background and flux. To do this, we formulate the non-linear inverse problem as two optimization problems that are solved in sequence. We demonstrate on both synthetic and measured data that TRINIDI can reconstruct quantitatively accurate 2D views of isotopic areal density that can then be reconstructed into quantitatively accurate 3D volumes of isotopic volumetric density.

Via

Paul Goyes, Edwin Vargas, Claudia Correa, Yu Sun, Ulugbek Kamilov, Brendt Wohlberg, Henry Arguello

Physical and budget constraints often result in irregular sampling, which complicates accurate subsurface imaging. Pre-processing approaches, such as missing trace or shot interpolation, are typically employed to enhance seismic data in such cases. Recently, deep learning has been used to address the trace interpolation problem at the expense of large amounts of training data to adequately represent typical seismic events. Nonetheless, state-of-the-art works have mainly focused on trace reconstruction, with little attention having been devoted to shot interpolation. Furthermore, existing methods assume regularly spaced receivers/sources failing in approximating seismic data from real (irregular) surveys. This work presents a novel shot gather interpolation approach which uses a continuous coordinate-based representation of the acquired seismic wavefield parameterized by a neural network. The proposed unsupervised approach, which we call coordinate-based seismic interpolation (CoBSI), enables the prediction of specific seismic characteristics in irregular land surveys without using external data during neural network training. Experimental results on real and synthetic 3D data validate the ability of the proposed method to estimate continuous smooth seismic events in the time-space and frequency-wavenumber domains, improving sparsity or low rank-based interpolation methods.

Via

Ulugbek S. Kamilov, Charles A. Bouman, Gregery T. Buzzard, Brendt Wohlberg

Plug-and-Play Priors (PnP) is one of the most widely-used frameworks for solving computational imaging problems through the integration of physical models and learned models. PnP leverages high-fidelity physical sensor models and powerful machine learning methods for prior modeling of data to provide state-of-the-art reconstruction algorithms. PnP algorithms alternate between minimizing a data-fidelity term to promote data consistency and imposing a learned regularizer in the form of an image denoiser. Recent highly-successful applications of PnP algorithms include bio-microscopy, computerized tomography, magnetic resonance imaging, and joint ptycho-tomography. This article presents a unified and principled review of PnP by tracing its roots, describing its major variations, summarizing main results, and discussing applications in computational imaging. We also point the way towards further developments by discussing recent results on equilibrium equations that formulate the problem associated with PnP algorithms.

Via

Qiuchen Zhai, Brendt Wohlberg, Gregery T. Buzzard, Charles A. Bouman

Ptychography is a computational imaging technique using multiple, overlapping, coherently illuminated snapshots to achieve nanometer resolution by solving a nonlinear phase-field recovery problem. Ptychography is vital for imaging of manufactured nanomaterials, but existing algorithms have computational shortcomings that limit large-scale application. In this paper, we present the Projected Multi-Agent Consensus Equilibrium (PMACE) approach for solving the ptychography inversion problem. This approach extends earlier work on MACE, which formulates an inversion problem as an equilibrium among multiple agents, each acting independently to update a full reconstruction. In PMACE, each agent acts on a portion (projection) corresponding to one of the snapshots, and these updates to projections are then combined to give an update to the full reconstruction. The resulting algorithm is easily parallelized, with convergence properties inherited from convergence results associated with MACE. We apply our method on simulated data and demonstrate that it outperforms competing algorithms in both reconstruction quality and convergence speed.

Via

Thilo Balke, Alexander M. Long, Sven C. Vogel, Brendt Wohlberg, Charles A. Bouman

Energy resolved neutron imaging (ERNI) is an advanced neutron radiography technique capable of non-destructively extracting spatial isotopic information within a given material. Energy-dependent radiography image sequences can be created by utilizing neutron time-of-flight techniques. In combination with uniquely characteristic isotopic neutron cross-section spectra, isotopic areal densities can be determined on a per-pixel basis, thus resulting in a set of areal density images for each isotope present in the sample. By preforming ERNI measurements over several rotational views, an isotope decomposed 3D computed tomography is possible. We demonstrate a method involving a robust and automated background estimation based on a linear programming formulation. The extremely high noise due to low count measurements is overcome using a sparse coding approach. It allows for a significant computation time improvement, from weeks to a few hours compared to existing neutron evaluation tools, enabling at the present stage a semi-quantitative, user-friendly routine application.

Via