Abstract:This paper investigates a novel task of talking face video generation solely from speeches. The speech-to-video generation technique can spark interesting applications in entertainment, customer service, and human-computer-interaction industries. Indeed, the timbre, accent and speed in speeches could contain rich information relevant to speakers' appearance. The challenge mainly lies in disentangling the distinct visual attributes from audio signals. In this article, we propose a light-weight, cross-modal distillation method to extract disentangled emotional and identity information from unlabelled video inputs. The extracted features are then integrated by a generative adversarial network into talking face video clips. With carefully crafted discriminators, the proposed framework achieves realistic generation results. Experiments with observed individuals demonstrated that the proposed framework captures the emotional expressions solely from speeches, and produces spontaneous facial motion in the video output. Compared to the baseline method where speeches are combined with a static image of the speaker, the results of the proposed framework is almost indistinguishable. User studies also show that the proposed method outperforms the existing algorithms in terms of emotion expression in the generated videos.
Abstract:Federated learning(FL) is an emerging distributed learning paradigm with default client privacy because clients can keep sensitive data on their devices and only share local training parameter updates with the federated server. However, recent studies reveal that gradient leakages in FL may compromise the privacy of client training data. This paper presents a gradient leakage resilient approach to privacy-preserving federated learning with per training example-based client differential privacy, coined as Fed-CDP. It makes three original contributions. First, we identify three types of client gradient leakage threats in federated learning even with encrypted client-server communications. We articulate when and why the conventional server coordinated differential privacy approach, coined as Fed-SDP, is insufficient to protect the privacy of the training data. Second, we introduce Fed-CDP, the per example-based client differential privacy algorithm, and provide a formal analysis of Fed-CDP with the $(\epsilon, \delta)$ differential privacy guarantee, and a formal comparison between Fed-CDP and Fed-SDP in terms of privacy accounting. Third, we formally analyze the privacy-utility trade-off for providing differential privacy guarantee by Fed-CDP and present a dynamic decay noise-injection policy to further improve the accuracy and resiliency of Fed-CDP. We evaluate and compare Fed-CDP and Fed-CDP(decay) with Fed-SDP in terms of differential privacy guarantee and gradient leakage resilience over five benchmark datasets. The results show that the Fed-CDP approach outperforms conventional Fed-SDP in terms of resilience to client gradient leakages while offering competitive accuracy performance in federated learning.
Abstract:Ensemble learning is gaining renewed interests in recent years. This paper presents EnsembleBench, a holistic framework for evaluating and recommending high diversity and high accuracy ensembles. The design of EnsembleBench offers three novel features: (1) EnsembleBench introduces a set of quantitative metrics for assessing the quality of ensembles and for comparing alternative ensembles constructed for the same learning tasks. (2) EnsembleBench implements a suite of baseline diversity metrics and optimized diversity metrics for identifying and selecting ensembles with high diversity and high quality, making it an effective framework for benchmarking, evaluating and recommending high diversity model ensembles. (3) Four representative ensemble consensus methods are provided in the first release of EnsembleBench, enabling empirical study on the impact of consensus methods on ensemble accuracy. A comprehensive experimental evaluation on popular benchmark datasets demonstrates the utility and effectiveness of EnsembleBench for promoting high diversity ensembles and boosting the overall performance of selected ensembles.
Abstract:Deep neural network (DNN) models are known to be vulnerable to maliciously crafted adversarial examples and to out-of-distribution inputs drawn sufficiently far away from the training data. How to protect a machine learning model against deception of both types of destructive inputs remains an open challenge. This paper presents XEnsemble, a diversity ensemble verification methodology for enhancing the adversarial robustness of DNN models against deception caused by either adversarial examples or out-of-distribution inputs. XEnsemble by design has three unique capabilities. First, XEnsemble builds diverse input denoising verifiers by leveraging different data cleaning techniques. Second, XEnsemble develops a disagreement-diversity ensemble learning methodology for guarding the output of the prediction model against deception. Third, XEnsemble provides a suite of algorithms to combine input verification and output verification to protect the DNN prediction models from both adversarial examples and out of distribution inputs. Evaluated using eleven popular adversarial attacks and two representative out-of-distribution datasets, we show that XEnsemble achieves a high defense success rate against adversarial examples and a high detection success rate against out-of-distribution data inputs, and outperforms existing representative defense methods with respect to robustness and defensibility.
Abstract:In this paper, we propose a real-time robot-based auxiliary system for risk evaluation of COVID-19 infection. It combines real-time speech recognition, temperature measurement, keyword detection, cough detection and other functions in order to convert live audio into actionable structured data to achieve the COVID-19 infection risk assessment function. In order to better evaluate the COVID-19 infection, we propose an end-to-end method for cough detection and classification for our proposed system. It is based on real conversation data from human-robot, which processes speech signals to detect cough and classifies it if detected. The structure of our model are maintained concise to be implemented for real-time applications. And we further embed this entire auxiliary diagnostic system in the robot and it is placed in the communities, hospitals and supermarkets to support COVID-19 testing. The system can be further leveraged within a business rules engine, thus serving as a foundation for real-time supervision and assistance applications. Our model utilizes a pretrained, robust training environment that allows for efficient creation and customization of customer-specific health states.
Abstract:Bitcoin and its decentralized computing paradigm for digital currency trading are one of the most disruptive technology in the 21st century. This paper presents a novel approach to developing a Bitcoin transaction forecast model, DLForecast, by leveraging deep neural networks for learning Bitcoin transaction network representations. DLForecast makes three original contributions. First, we explore three interesting properties between Bitcoin transaction accounts: topological connectivity pattern of Bitcoin accounts, transaction amount pattern, and transaction dynamics. Second, we construct a time-decaying reachability graph and a time-decaying transaction pattern graph, aiming at capturing different types of spatial-temporal Bitcoin transaction patterns. Third, we employ node embedding on both graphs and develop a Bitcoin transaction forecasting system between user accounts based on historical transactions with built-in time-decaying factor. To maintain an effective transaction forecasting performance, we leverage the multiplicative model update (MMU) ensemble to combine prediction models built on different transaction features extracted from each corresponding Bitcoin transaction graph. Evaluated on real-world Bitcoin transaction data, we show that our spatial-temporal forecasting model is efficient with fast runtime and effective with forecasting accuracy over 60\% and improves the prediction performance by 50\% when compared to forecasting model built on the static graph baseline.
Abstract:Deep neural networks based object detection models have revolutionized computer vision and fueled the development of a wide range of visual recognition applications. However, recent studies have revealed that deep object detectors can be compromised under adversarial attacks, causing a victim detector to detect no object, fake objects, or mislabeled objects. With object detection being used pervasively in many security-critical applications, such as autonomous vehicles and smart cities, we argue that a holistic approach for an in-depth understanding of adversarial attacks and vulnerabilities of deep object detection systems is of utmost importance for the research community to develop robust defense mechanisms. This paper presents a framework for analyzing and evaluating vulnerabilities of the state-of-the-art object detectors under an adversarial lens, aiming to analyze and demystify the attack strategies, adverse effects, and costs, as well as the cross-model and cross-resolution transferability of attacks. Using a set of quantitative metrics, extensive experiments are performed on six representative deep object detectors from three popular families (YOLOv3, SSD, and Faster R-CNN) with two benchmark datasets (PASCAL VOC and MS COCO). We demonstrate that the proposed framework can serve as a methodical benchmark for analyzing adversarial behaviors and risks in real-time object detection systems. We conjecture that this framework can also serve as a tool to assess the security risks and the adversarial robustness of deep object detectors to be deployed in real-world applications.
Abstract:This paper presents LDP-Fed, a novel federated learning system with a formal privacy guarantee using local differential privacy (LDP). Existing LDP protocols are developed primarily to ensure data privacy in the collection of single numerical or categorical values, such as click count in Web access logs. However, in federated learning model parameter updates are collected iteratively from each participant and consist of high dimensional, continuous values with high precision (10s of digits after the decimal point), making existing LDP protocols inapplicable. To address this challenge in LDP-Fed, we design and develop two novel approaches. First, LDP-Fed's LDP Module provides a formal differential privacy guarantee for the repeated collection of model training parameters in the federated training of large-scale neural networks over multiple individual participants' private datasets. Second, LDP-Fed implements a suite of selection and filtering techniques for perturbing and sharing select parameter updates with the parameter server. We validate our system deployed with a condensed LDP protocol in training deep neural networks on public data. We compare this version of LDP-Fed, coined CLDP-Fed, with other state-of-the-art approaches with respect to model accuracy, privacy preservation, and system capabilities.
Abstract:Federated learning (FL) is an emerging distributed machine learning framework for collaborative model training with a network of clients (edge devices). FL offers default client privacy by allowing clients to keep their sensitive data on local devices and to only share local training parameter updates with the federated server. However, recent studies have shown that even sharing local parameter updates from a client to the federated server may be susceptible to gradient leakage attacks and intrude the client privacy regarding its training data. In this paper, we present a principled framework for evaluating and comparing different forms of client privacy leakage attacks. We first provide formal and experimental analysis to show how adversaries can reconstruct the private local training data by simply analyzing the shared parameter update from local training (e.g., local gradient or weight update vector). We then analyze how different hyperparameter configurations in federated learning and different settings of the attack algorithm may impact on both attack effectiveness and attack cost. Our framework also measures, evaluates, and analyzes the effectiveness of client privacy leakage attacks under different gradient compression ratios when using communication efficient FL protocols. Our experiments also include some preliminary mitigation strategies to highlight the importance of providing a systematic attack evaluation framework towards an in-depth understanding of the various forms of client privacy leakage threats in federated learning and developing theoretical foundations for attack mitigation.
Abstract:The rapid growth of real-time huge data capturing has pushed the deep learning and data analytic computing to the edge systems. Real-time object recognition on the edge is one of the representative deep neural network (DNN) powered edge systems for real-world mission-critical applications, such as autonomous driving and augmented reality. While DNN powered object detection edge systems celebrate many life-enriching opportunities, they also open doors for misuse and abuse. This paper presents three Targeted adversarial Objectness Gradient attacks, coined as TOG, which can cause the state-of-the-art deep object detection networks to suffer from object-vanishing, object-fabrication, and object-mislabeling attacks. We also present a universal objectness gradient attack to use adversarial transferability for black-box attacks, which is effective on any inputs with negligible attack time cost, low human perceptibility, and particularly detrimental to object detection edge systems. We report our experimental measurements using two benchmark datasets (PASCAL VOC and MS COCO) on two state-of-the-art detection algorithms (YOLO and SSD). The results demonstrate serious adversarial vulnerabilities and the compelling need for developing robust object detection systems.