Abstract:Current parameter-efficient fine-tuning methods for adapting pre-trained language models to downstream tasks are susceptible to interference from noisy data. Conventional noise-handling approaches either rely on laborious data pre-processing or employ model architecture modifications prone to error accumulation. In contrast to existing noise-process paradigms, we propose a noise-robust adaptation method via asymmetric LoRA poisoning experts (LoPE), a novel framework that enhances model robustness to noise only with generated noisy data. Drawing inspiration from the mixture-of-experts architecture, LoPE strategically integrates a dedicated poisoning expert in an asymmetric LoRA configuration. Through a two-stage paradigm, LoPE performs noise injection on the poisoning expert during fine-tuning to enhance its noise discrimination and processing ability. During inference, we selectively mask the dedicated poisoning expert to leverage purified knowledge acquired by normal experts for noise-robust output. Extensive experiments demonstrate that LoPE achieves strong performance and robustness purely through the low-cost noise injection, which completely eliminates the requirement of data cleaning.
Abstract:Retrieval-Augmented Generation (RAG) encounters efficiency challenges when scaling to massive knowledge bases while preserving contextual relevance. We propose Hash-RAG, a framework that integrates deep hashing techniques with systematic optimizations to address these limitations. Our queries directly learn binary hash codes from knowledgebase code, eliminating intermediate feature extraction steps, and significantly reducing storage and computational overhead. Building upon this hash-based efficient retrieval framework, we establish the foundation for fine-grained chunking. Consequently, we design a Prompt-Guided Chunk-to-Context (PGCC) module that leverages retrieved hash-indexed propositions and their original document segments through prompt engineering to enhance the LLM's contextual awareness. Experimental evaluations on NQ, TriviaQA, and HotpotQA datasets demonstrate that our approach achieves a 90% reduction in retrieval time compared to conventional methods while maintaining considerate recall performance. Additionally, The proposed system outperforms retrieval/non-retrieval baselines by 1.4-4.3% in EM scores.
Abstract:Retrieval-augmented generation (RAG) has emerged as a pivotal method for expanding the knowledge of large language models. To handle complex queries more effectively, researchers developed Adaptive-RAG (A-RAG) to enhance the generated quality through multiple interactions with external knowledge bases. Despite its effectiveness, A-RAG exacerbates the pre-existing efficiency challenges inherent in RAG, which are attributable to its reliance on multiple iterations of generation. Existing A-RAG approaches process all retrieved contents from scratch. However, they ignore the situation where there is a significant overlap in the content of the retrieval results across rounds. The overlapping content is redundantly represented, which leads to a large proportion of repeated computations, thus affecting the overall efficiency. To address this issue, this paper introduces a model-agnostic approach that can be generally applied to A-RAG methods, which is dedicated to reducing the redundant representation process caused by the overlapping of retrieval results. Specifically, we use cache access and parallel generation to speed up the prefilling and decoding stages respectively. Additionally, we also propose an instruction-driven module to further guide the model to more effectively attend to each part of the content in a more suitable way for LLMs. Experiments show that our approach achieves 2.79 and 2.33 times significant acceleration on average for prefilling and decoding respectively while maintaining equal generation quality.
Abstract:While Large Language Models (LLMs) have shown remarkable abilities, they are hindered by significant resource consumption and considerable latency due to autoregressive processing. In this study, we introduce Adaptive N-gram Parallel Decoding (ANPD), an innovative and lossless approach that accelerates inference by allowing the simultaneous generation of multiple tokens. ANPD incorporates a two-stage approach: it begins with a rapid drafting phase that employs an N-gram module, which adapts based on the current interactive context, followed by a verification phase, during which the original LLM assesses and confirms the proposed tokens. Consequently, ANPD preserves the integrity of the LLM's original output while enhancing processing speed. We further leverage a multi-level architecture for the N-gram module to enhance the precision of the initial draft, consequently reducing inference latency. ANPD eliminates the need for retraining or extra GPU memory, making it an efficient and plug-and-play enhancement. In our experiments, models such as LLaMA and its fine-tuned variants have shown speed improvements up to 3.67x, validating the effectiveness of our proposed ANPD.
Abstract:Current state-of-the-art medical image segmentation methods prioritize accuracy but often at the expense of increased computational demands and larger model sizes. Applying these large-scale models to the relatively limited scale of medical image datasets tends to induce redundant computation, complicating the process without the necessary benefits. This approach not only adds complexity but also presents challenges for the integration and deployment of lightweight models on edge devices. For instance, recent transformer-based models have excelled in 2D and 3D medical image segmentation due to their extensive receptive fields and high parameter count. However, their effectiveness comes with a risk of overfitting when applied to small datasets and often neglects the vital inductive biases of Convolutional Neural Networks (CNNs), essential for local feature representation. In this work, we propose PMFSNet, a novel medical imaging segmentation model that effectively balances global and local feature processing while avoiding the computational redundancy typical in larger models. PMFSNet streamlines the UNet-based hierarchical structure and simplifies the self-attention mechanism's computational complexity, making it suitable for lightweight applications. It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies. Extensive comprehensive results demonstrate that even with a model (less than 1 million parameters), our method achieves superior performance in various segmentation tasks across different data scales. It achieves (IoU) metrics of 84.68%, 82.02%, and 78.82% on public datasets of teeth CT (CBCT), ovarian tumors ultrasound(MMOTU), and skin lesions dermoscopy images (ISIC 2018), respectively. The source code is available at https://github.com/yykzjh/PMFSNet.
Abstract:Facial expression recognition (FER) in the wild is a challenging task affected by the image quality and has attracted broad interest in computer vision. There is no research using feature fusion and ensemble strategy for FER simultaneously. Different from previous studies, this paper applies both internal feature fusion for a single model and feature fusion among multiple networks, as well as the ensemble strategy. This paper proposes one novel single model named R18+FAML, as well as one ensemble model named R18+FAML-FGA-T2V to improve the performance of the FER in the wild. Based on the structure of ResNet18 (R18), R18+FAML combines internal Feature fusion and three Attention blocks using Multiple Loss functions (FAML) to improve the diversity of the feature extraction. To improve the performance of R18+FAML, we propose a Feature fusion among networks based on the Genetic Algorithm (FGA), which can fuse the convolution kernels for feature extraction of multiple networks. On the basis of R18+FAML and FGA, we propose one ensemble strategy, i.e., the Top Two Voting (T2V) to support the classification of FER, which can consider more classification information comprehensively. Combining the above strategies, R18+FAML-FGA-T2V can focus on the main expression-aware areas. Extensive experiments demonstrate that our single model R18+FAML and the ensemble model R18+FAML-FGA-T2V achieve the accuracies of $\left( 90.32, 62.17, 65.83 \right)\%$ and $\left( 91.59, 63.27, 66.63 \right)\%$ on three challenging unbalanced FER datasets RAF-DB, AffectNet-8 and AffectNet-7 respectively, both outperforming the state-of-the-art results.
Abstract:Can advanced deep learning technologies be applied to analyze some ancient humanistic arts? Can deep learning technologies be directly applied to special scenes such as facial expression analysis of Terracotta Warriors? The big challenging is that the facial features of the Terracotta Warriors are very different from today's people. We found that it is very poor to directly use the models that have been trained on other classic facial expression datasets to analyze the facial expressions of the Terracotta Warriors. At the same time, the lack of public high-quality facial expression data of the Terracotta Warriors also limits the use of deep learning technologies. Therefore, we firstly use Generative Adversarial Networks (GANs) to generate enough high-quality facial expression data for subsequent training and recognition. We also verify the effectiveness of this approach. For the first time, this paper uses deep learning technologies to find common facial expressions of general and postured Terracotta Warriors. These results will provide an updated technical means for the research of art of the Terracotta Warriors and shine lights on the research of other ancient arts.
Abstract:Cloud computing has rapidly emerged as model for delivering Internet-based utility computing services. In cloud computing, Infrastructure as a Service (IaaS) is one of the most important and rapidly growing fields. Cloud providers provide users/machines resources such as virtual machines, raw (block) storage, firewalls, load balancers, and network devices in this service model. One of the most important aspects of cloud computing for IaaS is resource management. Scalability, quality of service, optimum utility, reduced overheads, increased throughput, reduced latency, specialised environment, cost effectiveness, and a streamlined interface are some of the advantages of resource management for IaaS in cloud computing. Traditionally, resource management has been done through static policies, which impose certain limitations in various dynamic scenarios, prompting cloud service providers to adopt data-driven, machine-learning-based approaches. Machine learning is being used to handle a variety of resource management tasks, including workload estimation, task scheduling, VM consolidation, resource optimization, and energy optimization, among others. This paper provides a detailed review of challenges in ML-based resource management in current research, as well as current approaches to resolve these challenges, as well as their advantages and limitations. Finally, we propose potential future research directions based on identified challenges and limitations in current research.
Abstract:With the rapid development of deep learning, deep reinforcement learning (DRL) began to appear in the field of resource scheduling in recent years. Based on the previous research on DRL in the literature, we introduce online resource scheduling algorithm DeepRM2 and the offline resource scheduling algorithm DeepRM_Off. Compared with the state-of-the-art DRL algorithm DeepRM and heuristic algorithms, our proposed algorithms have faster convergence speed and better scheduling efficiency with regarding to average slowdown time, job completion time and rewards.