Abstract:Current parameter-efficient fine-tuning methods for adapting pre-trained language models to downstream tasks are susceptible to interference from noisy data. Conventional noise-handling approaches either rely on laborious data pre-processing or employ model architecture modifications prone to error accumulation. In contrast to existing noise-process paradigms, we propose a noise-robust adaptation method via asymmetric LoRA poisoning experts (LoPE), a novel framework that enhances model robustness to noise only with generated noisy data. Drawing inspiration from the mixture-of-experts architecture, LoPE strategically integrates a dedicated poisoning expert in an asymmetric LoRA configuration. Through a two-stage paradigm, LoPE performs noise injection on the poisoning expert during fine-tuning to enhance its noise discrimination and processing ability. During inference, we selectively mask the dedicated poisoning expert to leverage purified knowledge acquired by normal experts for noise-robust output. Extensive experiments demonstrate that LoPE achieves strong performance and robustness purely through the low-cost noise injection, which completely eliminates the requirement of data cleaning.
Abstract:Retrieval-Augmented Generation (RAG) encounters efficiency challenges when scaling to massive knowledge bases while preserving contextual relevance. We propose Hash-RAG, a framework that integrates deep hashing techniques with systematic optimizations to address these limitations. Our queries directly learn binary hash codes from knowledgebase code, eliminating intermediate feature extraction steps, and significantly reducing storage and computational overhead. Building upon this hash-based efficient retrieval framework, we establish the foundation for fine-grained chunking. Consequently, we design a Prompt-Guided Chunk-to-Context (PGCC) module that leverages retrieved hash-indexed propositions and their original document segments through prompt engineering to enhance the LLM's contextual awareness. Experimental evaluations on NQ, TriviaQA, and HotpotQA datasets demonstrate that our approach achieves a 90% reduction in retrieval time compared to conventional methods while maintaining considerate recall performance. Additionally, The proposed system outperforms retrieval/non-retrieval baselines by 1.4-4.3% in EM scores.
Abstract:Retrieval-augmented generation (RAG) has emerged as a pivotal method for expanding the knowledge of large language models. To handle complex queries more effectively, researchers developed Adaptive-RAG (A-RAG) to enhance the generated quality through multiple interactions with external knowledge bases. Despite its effectiveness, A-RAG exacerbates the pre-existing efficiency challenges inherent in RAG, which are attributable to its reliance on multiple iterations of generation. Existing A-RAG approaches process all retrieved contents from scratch. However, they ignore the situation where there is a significant overlap in the content of the retrieval results across rounds. The overlapping content is redundantly represented, which leads to a large proportion of repeated computations, thus affecting the overall efficiency. To address this issue, this paper introduces a model-agnostic approach that can be generally applied to A-RAG methods, which is dedicated to reducing the redundant representation process caused by the overlapping of retrieval results. Specifically, we use cache access and parallel generation to speed up the prefilling and decoding stages respectively. Additionally, we also propose an instruction-driven module to further guide the model to more effectively attend to each part of the content in a more suitable way for LLMs. Experiments show that our approach achieves 2.79 and 2.33 times significant acceleration on average for prefilling and decoding respectively while maintaining equal generation quality.